مواضيع خلية كهربائيا
تبديل الفئات
الفئات

الدعم الفوري

اختر طريقتك المفضلة للتواصل مع فريقنا

وقت الاستجابة

خلال 8 ساعات في أيام العمل، 24 ساعة في العطل

خلية كهربائيا

الخلية الإلكتروليتية هي جهاز كهروكيميائي يستخدم الطاقة الكهربائية لتسهيل تفاعل الأكسدة والاختزال غير العفوي. يستخدم بشكل شائع للتحليل الكهربائي لبعض المركبات ، مثل الماء ، لتكوين الأكسجين الغازي والهيدروجين الغازي. المكونات الأساسية الثلاثة للخلايا الإلكتروليتية هي الكاثود (سالب الشحنة) والأنود (المشحون إيجابياً) والإلكتروليت. تُستخدم الخلايا الإلكتروليتية أيضًا لاستخراج الألمنيوم من البوكسيت ، وفي الطلاء الكهربائي ، وفي عمليات الاستخلاص الكهربائي. بالإضافة إلى ذلك ، فإن الإنتاج الصناعي للنحاس عالي النقاء والزنك عالي النقاء والألمنيوم عالي النقاء يتم دائمًا تقريبًا من خلال الخلايا الإلكتروليتية.


لدينا أفضل حلول الخلايا الإلكتروليتية لتلبية احتياجاتك. تتضمن مجموعتنا الواسعة من الخلايا الإلكتروليتية حلولًا قياسية للتطبيقات الشائعة ، بالإضافة إلى تصميمات مخصصة لمتطلبات فريدة.

تطبيقات الخلية الالكتروليتية

  • تحلل المركبات الكيميائية ، مثل الماء إلى هيدروجين وأكسجين ، والبوكسيت إلى ألومنيوم ومواد كيميائية أخرى.
  • طلاء النحاس أو الفضة أو النيكل أو الكروم.
  • التكرير الكهربائي والتعدين الكهربائي للمعادن غير الحديدية مثل الألومنيوم عالي النقاء والنحاس والزنك والرصاص.
  • إنتاج الصودا الكاوية والمواد الكيميائية الأخرى.
  • تكرير النحاس والمعادن الأخرى.
  • تحديد جهد القطب من معادن مختلفة.
  • تحديد السلاسل الكهروكيميائية عن طريق نظام قطب الهيدروجين القياسي (SHE).

مزايا الخلية الإلكتروليتية

  • تُستخدم الخلايا الإلكتروليتية لإنتاج غاز الهيدروجين والأكسجين من الماء.
  • يتم استخدامها لاستخراج الألمنيوم من البوكسيت.
  • تُستخدم الخلايا الإلكتروليتية في الطلاء الكهربائي لإنشاء طبقة واقية رقيقة من معدن معين على سطح معدن آخر.
  • يتم إجراء التكرير الكهربائي للعديد من المعادن غير الحديدية بمساعدة الخلايا الإلكتروليتية.
  • تستخدم الخلايا الالكتروليتية في عمليات الكهرباء.
  • يتم دائمًا الإنتاج الصناعي للنحاس عالي النقاء والزنك عالي النقاء والألمنيوم عالي النقاء من خلال الخلايا الإلكتروليتية.

الخلية الإلكتروليتية هي خلية كهروكيميائية تقود تفاعل الأكسدة والاختزال غير التلقائي مع الطاقة الكهربائية. يستخدم على نطاق واسع لتحليل المركبات الكيميائية وكهرباء المعادن المختلفة. يوفر لك خط منتجاتنا الواسع حلاً قياسيًا يناسب احتياجاتك ، وبالنسبة للتطبيقات الأكثر تميزًا ، ستساعدنا خدمة التصميم المخصص لدينا في تلبية متطلباتك الخاصة.

FAQ

ما هي استخدامات الخلايا الالكتروليتية؟

تستخدم الخلايا الإلكتروليتية لتحلل المركبات الكيميائية من خلال التحليل الكهربائي. تتضمن هذه العملية استخدام تيار كهربائي خارجي لتسهيل تفاعل الأكسدة والاختزال غير التلقائي. تُستخدم الخلايا الإلكتروليتية بشكل شائع لإنتاج الأكسجين وغاز الهيدروجين من الماء ، واستخراج الألمنيوم من البوكسيت ، وصفيح المعادن المختلفة بالكهرباء. بالإضافة إلى ذلك ، تُستخدم الخلايا الإلكتروليتية في التكرير الكهربائي والكهرباء للمعادن غير الحديدية مثل الألومنيوم والنحاس والزنك والرصاص. بشكل عام ، تتمتع الخلايا الإلكتروليتية بالعديد من التطبيقات الصناعية في إنتاج وصقل مختلف المركبات الكيميائية والمعادن.

ما هو الفرق بين الخلية الجلفانية وخلية التحليل الكهربائي؟

الفرق الرئيسي بين الخلية الجلفانية والخلية الإلكتروليتية هو أن الخلية الجلفانية تولد طاقة كهربائية من تفاعل الأكسدة والاختزال العفوي ، بينما تستخدم الخلية الإلكتروليتية الطاقة الكهربائية لدفع تفاعل الأكسدة والاختزال غير التلقائي. الفرق الآخر هو أن الخلية الجلفانية لها إمكانات خلية موجبة ، بينما تحتوي الخلية الإلكتروليتية على إمكانات خلية سلبية. تستخدم الخلايا الجلفانية في البطاريات ، بينما تستخدم الخلايا الإلكتروليتية في عمليات مثل الطلاء الكهربائي وتنقية المعادن.

ما هي الخلية الإلكتروليتية وكيف تعمل؟

الخلية الإلكتروليتية هي خلية كهروكيميائية تستخدم الطاقة الكهربائية لدفع تفاعل الأكسدة والاختزال غير العفوي. يتكون من إلكتروليت وقطبين كهربائيين (كاثود وأنود). عندما يتم توفير جهد خارجي للأقطاب الكهربائية ، تنجذب الأيونات الموجودة في الإلكتروليت إلى قطب كهربائي بشحنة معاكسة ، مما يسمح بحدوث نقل الشحنة (المعروف أيضًا باسم faradaic أو الأكسدة والاختزال). يسمى القطب السالب بالكاثود ويسمى القطب الموجب بالقطب الموجب. تحدث الأكسدة عند القطب الموجب ، ويحدث الاختزال عند القطب السالب.

اطلب اقتباس

سيقوم فريقنا المحترف بالرد عليك في غضون يوم عمل واحد. لا تتردد في الاتصال بنا!


المقالات ذات الصلة

هندسة التفاعل: اختيار جسم الخلية الإلكتروليتية المناسب

هندسة التفاعل: اختيار جسم الخلية الإلكتروليتية المناسب

اكتشف كيف يؤثر حجم الخلية وإغلاقها على البيانات الكهروكيميائية. تعلم كيفية الموازنة بين الندرة والحجم والحساسية من خلال اختيار معدات المختبر المناسبة.

اقرأ المزيد
هندسة التحكم: إتقان الخلية الكهروضوئية فائقة الإحكام

هندسة التحكم: إتقان الخلية الكهروضوئية فائقة الإحكام

الدقة في الكيمياء الكهربائية ليست مجرد نظرية؛ إنها انضباط ميكانيكي. تعرف على البروتوكولات الحاسمة للخلايا الكهروضوئية فائقة الإحكام.

اقرأ المزيد
هندسة التحكم: لماذا يحدد الاستقرار الحراري الدقة الكهروكيميائية

هندسة التحكم: لماذا يحدد الاستقرار الحراري الدقة الكهروكيميائية

أتقن الدقة الكهروكيميائية بفهم التفاعل بين أنظمة الأقطاب الثلاثة والتنظيم الحراري. تخلص من المتغيرات لضمان قابلية التكرار.

اقرأ المزيد
هندسة الاحتواء غير المرئي: لماذا يحدد اختيار المواد الدقة الكهروكيميائية

هندسة الاحتواء غير المرئي: لماذا يحدد اختيار المواد الدقة الكهروكيميائية

استكشف الهندسة الاستراتيجية وراء زجاج البورسليكات العالي و PTFE في الخلايا الكهروكيميائية - موازنة الرؤية مع الخمول الكيميائي المطلق.

اقرأ المزيد
سيمفونية الصمت: الموليبدينوم وهندسة منطقة التسخين بالفراغ

سيمفونية الصمت: الموليبدينوم وهندسة منطقة التسخين بالفراغ

لماذا نثق في الموليبدينوم في البيئات الأكثر تطرفًا؟ استكشف المنطق الهندسي وراء مناطق التسخين المعدنية بالكامل والسعي لتحقيق النقاء المطلق.

اقرأ المزيد
الديناميكا الحرارية للدقة: إتقان خلية التحليل الكهربائي ذات الطبقة المزدوجة

الديناميكا الحرارية للدقة: إتقان خلية التحليل الكهربائي ذات الطبقة المزدوجة

الدقة ليست مصادفة. اكتشف التشغيل المنهجي لخلايا التحليل الكهربائي ذات الطبقة المزدوجة، حيث الاستقرار الحراري والإعداد الصارم يحددان النجاح.

اقرأ المزيد
هندسة النقاء: لماذا تفشل التجارب الكهروكيميائية

هندسة النقاء: لماذا تفشل التجارب الكهروكيميائية

التلوث في الخلايا الكهروكيميائية نادرًا ما يكون مجرد "أوساخ" - إنه تلف للبيانات. اكتشف النهج المنهجي للحفاظ على سلامة التجربة.

اقرأ المزيد
المتغير الصامت: هندسة الموثوقية في الخلايا الكهروضوئية

المتغير الصامت: هندسة الموثوقية في الخلايا الكهروضوئية

تعتمد دقة البيانات على سلامة المعدات. تعرف على بروتوكولات الهندسة لصيانة الخلايا الكهروضوئية لمنع الأخطاء النظامية.

اقرأ المزيد
الهندسة المعمارية الهادئة للوضوح: الحفاظ على خلايا التحليل الضوئية ذات النافذة الجانبية

الهندسة المعمارية الهادئة للوضوح: الحفاظ على خلايا التحليل الضوئية ذات النافذة الجانبية

تعرف على البروتوكولات الدقيقة لتخزين خلايا التحليل الضوئية. امنع التدهور الحراري والحفر الكيميائي وانجراف البيانات باستخدام استراتيجيات الصيانة المتخصصة.

اقرأ المزيد
صمت الختم: لماذا الدقة الكهروكيميائية هي معركة ضد الغلاف الجوي

صمت الختم: لماذا الدقة الكهروكيميائية هي معركة ضد الغلاف الجوي

الدقة في الكيمياء الكهربائية ليست مجرد جهد؛ إنها تتعلق بالعزل. اكتشف كيف تتغلب الخلايا المحكمة الغلق على التلوث وتحدد قابلية التكرار.

اقرأ المزيد
الشريك الصامت: لماذا يعد اختيار المواد في الكيمياء الكهربائية مسألة ثقة

الشريك الصامت: لماذا يعد اختيار المواد في الكيمياء الكهربائية مسألة ثقة

اكتشف لماذا يعتبر الزجاج البورسليكاتي العالي و PTFE المعايير غير القابلة للتفاوض للخلايا الإلكتروليتية. تعمق في علم المواد للحصول على بيانات دقيقة.

اقرأ المزيد
فرنك الحث الخاص بك يخذلك. السبب ليس ما تعتقده.

فرنك الحث الخاص بك يخذلك. السبب ليس ما تعتقده.

هل تعاني من صهر غير متسق أو تكاليف عالية؟ قد تكون المشكلة عدم تطابق أساسي في نوع فرن الحث الخاص بك. تعلم كيفية إصلاحه.

اقرأ المزيد
هندسة التحكم: لماذا يحدد الاستقرار الحراري نجاح التحليل الكهربائي

هندسة التحكم: لماذا يحدد الاستقرار الحراري نجاح التحليل الكهربائي

اكتشف كيف تقضي خلايا التحليل الكهربائي ذات الحمام المائي مزدوج الطبقة على المتغيرات الحرارية، مما يضمن الدقة والقابلية للتكرار في الأبحاث الكهروكيميائية.

اقرأ المزيد
فن غير التلقائي: الدقة في الدوائر الكهروكيميائية

فن غير التلقائي: الدقة في الدوائر الكهروكيميائية

إتقان إعداد الخلية الكهروكيميائية يتطلب أكثر من مجرد توصيل الأسلاك. إنه يتطلب نهجًا منهجيًا للقطبية والنقاء والتحكم في الطاقة.

اقرأ المزيد
كيفية اختيار وتحسين مضخات التفريغ الدائرية للمياه لمختبرك

كيفية اختيار وتحسين مضخات التفريغ الدائرية للمياه لمختبرك

تعلم كيفية اختيار وتحسين مضخات التفريغ الدائرية للمياه للتطبيقات المعملية، وتحقيق التوازن بين الكفاءة والموثوقية.

اقرأ المزيد
بولي تترافلوروإيثيلين (PTFE):كيف يعزز معامل الاحتكاك المنخفض التقدم الصناعي

بولي تترافلوروإيثيلين (PTFE):كيف يعزز معامل الاحتكاك المنخفض التقدم الصناعي

استكشاف المزايا الفريدة لمعامل الاحتكاك المنخفض للبولي تترافلوروإيثيلين (PTFE) وتحليل كيفية تعزيزه للتقدم والابتكار في التكنولوجيا الصناعية من حيث تقليل التآكل وتحسين كفاءة المعدات.

اقرأ المزيد
مقاومة PTFE لدرجات الحرارة العالية والتآكل:لماذا لا غنى عنه في الصناعة

مقاومة PTFE لدرجات الحرارة العالية والتآكل:لماذا لا غنى عنه في الصناعة

تُحلل المزايا الفريدة للبولي تترافلوروإيثيلين (PTFE) في درجات الحرارة العالية ومقاومة التآكل السبب في أنه أصبح مادة لا غنى عنها في الصناعة، خاصة في التطبيقات في البيئات القاسية.

اقرأ المزيد
التطبيق المبتكر ل PTFE في الأختام الميكانيكية

التطبيق المبتكر ل PTFE في الأختام الميكانيكية

لقد أصبحت مادة PTFE واحدة من المواد الأساسية في مجال الموانع الميكانيكية بسبب ثباتها الكيميائي الفريد، ومعامل الاحتكاك المنخفض (0.04-0.15)، ونطاق درجات الحرارة الواسع (-268 درجة مئوية إلى +315 درجة مئوية) ومقاومة ممتازة للتآكل (درجة الحموضة 0-14).

اقرأ المزيد
الدور الرئيسي لمادة PTFE في تصنيع أشباه الموصلات: من أنابيب الغاز إلى العزل الكهربائي

الدور الرئيسي لمادة PTFE في تصنيع أشباه الموصلات: من أنابيب الغاز إلى العزل الكهربائي

من خطوط أنابيب توصيل الغاز عالية النقاء إلى مكونات العزل الكهربائية الدقيقة، يوفر التطبيق متعدد الأوجه لـ PTFE في سلسلة صناعة أشباه الموصلات ضمانات مهمة لنقاء واستقرار وموثوقية عملية التصنيع.

اقرأ المزيد
حشية PTFE: حل شامل لإحكام إغلاق الشفة

حشية PTFE: حل شامل لإحكام إغلاق الشفة

لقد أصبحت حشيات البولي تترافلوروإيثيلين (PTFE) خيارًا مثاليًا في مجال إحكام إغلاق الشفة نظرًا لثباتها الكيميائي الفريد ومقاومتها العالية لدرجات الحرارة العالية.

اقرأ المزيد