المنتجات المواد الاستهلاكية والمواد المعملية المواد الاستهلاكية الكهروكيميائية
تبديل الفئات
الفئات

الدعم الفوري

اختر طريقتك المفضلة للتواصل مع فريقنا

وقت الاستجابة

خلال 8 ساعات في أيام العمل، 24 ساعة في العطل

المواد الاستهلاكية الكهروكيميائية

نحن نقدم خدمة شراء مريحة وقفة واحدة للأدوات الكهروكيميائية والمواد الاستهلاكية. كل ما عليك القيام به هو تزويدنا بقائمة بالمواد الاستهلاكية التي تحتاجها ، وسنتكفل بالباقي.

منتجاتنا مقاومة للأحماض والقلويات ، ومصنوعة من مواد عالية الجودة آمنة ومتينة. يمكنك الوثوق بمنتجاتنا لتلبية احتياجاتك وتقديم أداء موثوق.


الخلية الإلكتروليتية هي خلية كهروكيميائية تتطلب مصدرًا خارجيًا للطاقة الكهربائية لتحريك تفاعل كيميائي لا يحدث تلقائيًا. تتكون الخلية من قطبين كهربائيين ، قطب موجب (موجب) وكاثود (سلبي) ، مغموران في محلول إلكتروليت. من خلال تطبيق جهد بين القطبين ، يتم إجبار تفاعل كيميائي على الحدوث.

وهذا يختلف عن الخلية الجلفانية التي تولد طاقة كهربائية وهي أساس البطارية. في الخلية الجلفانية ، يكون التفاعل الكلي تلقائيًا ، مما يعني أن طاقة جيبس الحرة تظل سالبة. على النقيض من ذلك ، فإن التفاعل الكلي في خلية التحليل الكهربائي هو عكس التفاعل التلقائي ، مما ينتج عنه طاقة خالية من جيبس إيجابية.

تُستخدم الخلايا الإلكتروليتية بشكل شائع في العديد من التطبيقات الصناعية والمخبرية ، مثل الطلاء الكهربائي والتحليل الكهربائي وإنتاج بعض المواد الكيميائية. يلعبون دورًا مهمًا في العديد من المجالات ، بما في ذلك علم المعادن والطب وتخزين الطاقة. من خلال التحكم في الجهد المطبق وخصائص محلول الإلكتروليت ، من الممكن تكييف التفاعلات لإنتاج المنتجات المرغوبة بكفاءة ودقة عالية.

التطبيقات

تستخدم الخلايا الإلكتروليتية التحليل الكهربائي لتحليل المركبات الكيميائية ، مثل الماء والبوكسيت ، إلى العناصر المكونة لها من خلال تطبيق تيار كهربائي مباشر. يستخدم الطلاء الكهربائي للمعادن مثل النحاس والفضة والنيكل والكروم أيضًا الخلايا الإلكتروليتية.

تلعب الخلايا الإلكتروليتية دورًا مهمًا في الإنتاج التجاري للمعادن غير الحديدية عالية النقاء مثل الألومنيوم والنحاس والزنك والرصاص من خلال عمليات التكرير الكهربائي وعمليات الاستخلاص الكهربائي.

مستهلكات كهروكيميائية KinTek

تعد المواد الاستهلاكية الكهروكيميائية الخاصة بنا هي الخيار الأفضل للباحثين والمهنيين على حد سواء. مع تاريخ إنتاج طويل ، ومجموعة واسعة من المنتجات ، والقدرة على التخصيص ، فإن منتجاتنا هي الحل الأمثل لجميع احتياجاتك الكهروكيميائية.

FAQ

ما هو القطب في الكيمياء الكهربائية؟

القطب هو موصل كهربائي صلب يعمل كنقطة يدخل فيها التيار ويترك المنحل بالكهرباء في خلية كهروكيميائية. عندما يغادر التيار الكهربائي ، يطلق عليه الكاثود ، وعندما يدخل ، يطلق عليه الأنود. تعتبر الأقطاب الكهربائية من المكونات الأساسية للخلايا الكهروكيميائية ، حيث تنقل الإلكترونات المنتجة من نصف خلية إلى أخرى ، مما ينتج عنه شحنة كهربائية. تعتمد الشحنة على نظام إلكترود قياسي (SHE) بإمكانية مرجعية تبلغ 0 فولت وتعمل كوسيط لأي حساب محتمل للخلية.

ما هي المواد المستخدمة في الخلية الكهروكيميائية؟

المواد المستخدمة في الخلية الكهروكيميائية هي الأنود والكاثود والإلكتروليت. القطب الموجب هو القطب السالب الذي يطلق الإلكترونات إلى الدائرة الخارجية ويتأكسد أثناء التفاعل الكهروكيميائي. الكاثود هو القطب الموجب الذي يكتسب الإلكترونات من الدائرة الخارجية ويتم تقليله أثناء التفاعل الكهروكيميائي. المحلول الكهربائي هو الوسيط الذي يوفر آلية نقل الأيونات بين الكاثود والأنود في الخلية. تشمل الخصائص المرغوبة لمواد الأنود والكاثود والإلكتروليت الكفاءة العالية والاستقرار والموصلية الجيدة وسهولة التصنيع والتكلفة المنخفضة.

ما هي وظيفة القطب المساعد؟

القطب المساعد ، المعروف أيضًا باسم القطب المضاد ، هو قطب كهربائي يستخدم في خلية كهروكيميائية ثلاثية الأقطاب لتحليل الفولتميتر أو تفاعلات أخرى حيث من المتوقع أن يتدفق تيار كهربائي. وتتمثل وظيفتها الأساسية في توفير مسار لتدفق التيار في الخلية الكهروكيميائية دون تمرير تيار كبير عبر القطب المرجعي. يوفر وسيلة لتطبيق جهد الإدخال على قطب العمل. يمكن عزل القطب الإضافي عن القطب العامل لمنع أي منتجات ثانوية متولدة من تلويث محلول الاختبار الرئيسي. غالبًا ما يتم تصنيعه من مواد خاملة كهروكيميائية مثل الذهب أو البلاتين أو الكربون.

ما هو قطب القرص الدوار المستخدم؟

قطب القرص الدوار (RDE) هو قطب كهربائي هيدروديناميكي يعمل في التطبيقات الكهروكيميائية مثل دراسات التآكل ، وأبحاث خلايا الوقود ، وتطوير المحفز ، والتحكم في النقل الجماعي للمواد المتفاعلة إلى سطح القطب. يتم استخدامه عندما يكون النقل الجماعي المحدد إلى قطب العينة مطلوبًا. يحفز دوران القرص تدفقًا ثابتًا للمادة التحليلية إلى القطب ، مما يجعله مثاليًا للتحقيق في الظواهر الكهروكيميائية المختلفة مثل النقل متعدد الإلكترونات ، وحركية نقل الإلكترون البطيء ، وخطوات الامتزاز / الامتصاص ، وآليات التفاعل الكهروكيميائية. في الكيمياء التحليلية ، يتم استخدام RDE في أنظمة ثلاثية الأقطاب لقياس الفولتميتر الهيدروديناميكي لاستكشاف آليات التفاعل المتعلقة بكيمياء الأكسدة والاختزال.

ما هي استخدامات الخلايا الالكتروليتية؟

تستخدم الخلايا الإلكتروليتية لتحلل المركبات الكيميائية من خلال التحليل الكهربائي. تتضمن هذه العملية استخدام تيار كهربائي خارجي لتسهيل تفاعل الأكسدة والاختزال غير التلقائي. تُستخدم الخلايا الإلكتروليتية بشكل شائع لإنتاج الأكسجين وغاز الهيدروجين من الماء ، واستخراج الألمنيوم من البوكسيت ، وصفيح المعادن المختلفة بالكهرباء. بالإضافة إلى ذلك ، تُستخدم الخلايا الإلكتروليتية في التكرير الكهربائي والكهرباء للمعادن غير الحديدية مثل الألومنيوم والنحاس والزنك والرصاص. بشكل عام ، تتمتع الخلايا الإلكتروليتية بالعديد من التطبيقات الصناعية في إنتاج وصقل مختلف المركبات الكيميائية والمعادن.

ما هي الأقطاب الثلاثة في الكيمياء الكهربائية؟

الأقطاب الثلاثة المستخدمة بشكل شائع في الكيمياء الكهربائية هي القطب العامل (WE) والقطب المرجعي (RE) والقطب الكهربي المضاد (CE). نحن حيث يحدث التفاعل الكهروكيميائي ويتم قياس التيار. توفر مصادر الطاقة المتجددة إمكانات مرجعية ثابتة للقياس. يكمل CE الدائرة ويوازن الشحنة بين WE و RE. يعد الإعداد والاستخدام المناسبين لكل قطب كهربائي أمرًا بالغ الأهمية لإجراء تجارب كهروكيميائية دقيقة.

ما هي أمثلة المواد الكهروكيميائية؟

تتضمن أمثلة المواد الكهروكيميائية مواد الأنود لأكسدة حمض الأسيتيك ، ومواد الكاثود لتقليل مادة الأكريلونيتريل ، ومواد القطب الكهربي للتحويل الهيدروجيني الكاثودي للفورمالدهيد إلى جلايكول الإيثيلين. يمكن تحديد انتقائية التفاعلات الكهروكيميائية التركيبية من خلال المواد المستخدمة ، حيث تضفي مواد الإلكترود تحكمًا وتنوعًا في النتائج. يمكن أن يؤدي اختيار مادة الإلكترود أيضًا إلى تشغيل التفاعل أو إيقافه ، كما هو الحال مع عملية التحلل المائي الكاثودي للفورمالدهيد التي تحدث فقط مع كاثودات الزئبق أو الكربون. يمكن أن يسهل فهم تأثير مواد الإلكترود التبرير المحسن للاختلافات في الغلات المحققة أو الانتقائية.

ما هو الفرق بين القطب المساعد والمرجعي؟

يكمن الاختلاف الرئيسي بين القطب المساعد والمرجع في وظيفتها في خلية كهروكيميائية. يستخدم القطب الإضافي ، المعروف أيضًا باسم القطب الكهربائي المضاد ، لتسهيل نقل الشحنة من وإلى المادة التحليلية وتمرير كل التيار بحيث يمكن التحكم في التيار الكهربائي عند العمل. من ناحية أخرى ، يتم استخدام القطب المرجعي للإشارة عند قياس والتحكم في إمكانات القطب العامل ولا يمر أي تيار. يحتوي القطب المرجعي على جهد ثابت ، بينما يمكن أن تتغير إمكانات القطب المساعد.

ما هي طريقة تدوير القطب؟

طريقة القطب الكهربائي هي تقنية تستخدم في التطبيقات الكهروكيميائية مثل أبحاث خلايا الوقود ، ودراسات التآكل ، وتطوير المحفز ، والتحكم في النقل الجماعي للمواد المتفاعلة إلى سطح القطب. إنه ينطوي على استخدام قطب كهربائي دوار (RDE) يدور أثناء التجارب ، مما يؤدي إلى تدفق ثابت من المادة التحليلية إلى القطب. يمكن أن يحقق RDE بسرعة الظروف التي يتم فيها التحكم في تيار الحالة المستقرة من خلال تدفق المحلول بدلاً من الانتشار. من خلال إجراء تجارب بمعدلات دوران مختلفة ، يمكن التحقيق في ظواهر كهروكيميائية مختلفة ، بما في ذلك نقل الإلكترونات المتعددة ، وخطوات الامتزاز / الامتصاص ، وآليات التفاعل الكهروكيميائية.

ما هو الفرق بين الخلية الجلفانية وخلية التحليل الكهربائي؟

الفرق الرئيسي بين الخلية الجلفانية والخلية الإلكتروليتية هو أن الخلية الجلفانية تولد طاقة كهربائية من تفاعل الأكسدة والاختزال العفوي ، بينما تستخدم الخلية الإلكتروليتية الطاقة الكهربائية لدفع تفاعل الأكسدة والاختزال غير التلقائي. الفرق الآخر هو أن الخلية الجلفانية لها إمكانات خلية موجبة ، بينما تحتوي الخلية الإلكتروليتية على إمكانات خلية سلبية. تستخدم الخلايا الجلفانية في البطاريات ، بينما تستخدم الخلايا الإلكتروليتية في عمليات مثل الطلاء الكهربائي وتنقية المعادن.

ما هي طريقة قطب القرص الدائري الدوار؟

قطب القرص الدائري الدوار (RRDE) هو قطب كهربائي مزدوج يعمل في الكيمياء التحليلية لقياس الفولتميتر الهيدروديناميكي. إنه مصمم لفحص آليات التفاعل المتعلقة بكيمياء الأكسدة والاختزال والظواهر الكيميائية الأخرى. يحتوي RRDE على قطب كهربي في مركزه وإلكترود حلقي حول القرص. يستفيد النظام من التدفق الصفحي الذي تم إنشاؤه أثناء الدوران ، مما يسمح بالتحكم في اتصال المحلول بالقرص والأقطاب الحلقية. من خلال تغيير معدل الدوران ، من الممكن تحديد معدل التفاعل الكيميائي والتحقيق في الظواهر الكهروكيميائية المختلفة.

ما هي الخلية الإلكتروليتية وكيف تعمل؟

الخلية الإلكتروليتية هي خلية كهروكيميائية تستخدم الطاقة الكهربائية لدفع تفاعل الأكسدة والاختزال غير العفوي. يتكون من إلكتروليت وقطبين كهربائيين (كاثود وأنود). عندما يتم توفير جهد خارجي للأقطاب الكهربائية ، تنجذب الأيونات الموجودة في الإلكتروليت إلى قطب كهربائي بشحنة معاكسة ، مما يسمح بحدوث نقل الشحنة (المعروف أيضًا باسم faradaic أو الأكسدة والاختزال). يسمى القطب السالب بالكاثود ويسمى القطب الموجب بالقطب الموجب. تحدث الأكسدة عند القطب الموجب ، ويحدث الاختزال عند القطب السالب.

ما هي مزايا قطب القرص الدوار؟

تشمل مزايا أقطاب القرص الدوار (RDE) القدرة على التحكم في النقل الجماعي للمواد المتفاعلة إلى سطح القطب ، وتحقيق التدفق الصفحي للمحلول باتجاه القطب وعبره ، والتحقيق في الظواهر الكهروكيميائية المختلفة مثل النقل متعدد الإلكترونات وآليات التفاعل الكهروكيميائية. تُستخدم RDE بشكل شائع في التطبيقات الكهروكيميائية مثل دراسات التآكل ، وأبحاث خلايا الوقود ، وتطوير المحفزات. يمكن ضبط معدل الدوران الأساسي لـ RDEs يدويًا ، ويمكن التحكم في معدل دوران القطب بدقة باستخدام محرك كهربائي. RDEs هي أداة قوية للتحقيق في آليات التفاعل المتعلقة بكيمياء الأكسدة والاختزال والظواهر الكيميائية الأخرى.

اطلب اقتباس

سيقوم فريقنا المحترف بالرد عليك في غضون يوم عمل واحد. لا تتردد في الاتصال بنا!


المقالات ذات الصلة

بولي تترافلوروإيثيلين (PTFE):كيف يعزز معامل الاحتكاك المنخفض التقدم الصناعي

بولي تترافلوروإيثيلين (PTFE):كيف يعزز معامل الاحتكاك المنخفض التقدم الصناعي

استكشاف المزايا الفريدة لمعامل الاحتكاك المنخفض للبولي تترافلوروإيثيلين (PTFE) وتحليل كيفية تعزيزه للتقدم والابتكار في التكنولوجيا الصناعية من حيث تقليل التآكل وتحسين كفاءة المعدات.

اقرأ المزيد
مقاومة PTFE لدرجات الحرارة العالية والتآكل:لماذا لا غنى عنه في الصناعة

مقاومة PTFE لدرجات الحرارة العالية والتآكل:لماذا لا غنى عنه في الصناعة

تُحلل المزايا الفريدة للبولي تترافلوروإيثيلين (PTFE) في درجات الحرارة العالية ومقاومة التآكل السبب في أنه أصبح مادة لا غنى عنها في الصناعة، خاصة في التطبيقات في البيئات القاسية.

اقرأ المزيد
التطبيق المبتكر ل PTFE في الأختام الميكانيكية

التطبيق المبتكر ل PTFE في الأختام الميكانيكية

لقد أصبحت مادة PTFE واحدة من المواد الأساسية في مجال الموانع الميكانيكية بسبب ثباتها الكيميائي الفريد، ومعامل الاحتكاك المنخفض (0.04-0.15)، ونطاق درجات الحرارة الواسع (-268 درجة مئوية إلى +315 درجة مئوية) ومقاومة ممتازة للتآكل (درجة الحموضة 0-14).

اقرأ المزيد
الدور الرئيسي لمادة PTFE في تصنيع أشباه الموصلات: من أنابيب الغاز إلى العزل الكهربائي

الدور الرئيسي لمادة PTFE في تصنيع أشباه الموصلات: من أنابيب الغاز إلى العزل الكهربائي

من خطوط أنابيب توصيل الغاز عالية النقاء إلى مكونات العزل الكهربائية الدقيقة، يوفر التطبيق متعدد الأوجه لـ PTFE في سلسلة صناعة أشباه الموصلات ضمانات مهمة لنقاء واستقرار وموثوقية عملية التصنيع.

اقرأ المزيد
تقنيات تحضير المعادن عالية النقاء وتطبيقاتها

تقنيات تحضير المعادن عالية النقاء وتطبيقاتها

نظرة متعمقة على تعريف المعادن عالية النقاء وتقنيات تحضيرها وتطبيقاتها.

اقرأ المزيد
استرداد واستخلاص معدن الإنديوم من مواد النفايات المستهدفة من ITO

استرداد واستخلاص معدن الإنديوم من مواد النفايات المستهدفة من ITO

تناقش هذه المقالة طرق وعمليات استعادة الإنديوم عالي النقاء من نفايات هدف ITO، بما في ذلك تقنيات التنقية الكيميائية والكهربائية.

اقرأ المزيد
تطبيق أهداف المعادن الثمينة وتحضيرها واستعادتها في تصنيع أشباه الموصلات

تطبيق أهداف المعادن الثمينة وتحضيرها واستعادتها في تصنيع أشباه الموصلات

يناقش استخدام وإعداد وإعادة تدوير أهداف المعادن الثمينة في تصنيع أشباه الموصلات.

اقرأ المزيد
التطورات في المواد الأرضية النادرة وتقنيات إعادة التدوير

التطورات في المواد الأرضية النادرة وتقنيات إعادة التدوير

يستكشف المواد الأرضية النادرة الجديدة وتقنيات إعادة التدوير، مع التركيز على الصقل والمعادن عالية النقاء وطرق إعادة التدوير المختلفة.

اقرأ المزيد
دليل الأقطاب الكهربية المرجعية في القياسات الكهروكيميائية

دليل الأقطاب الكهربية المرجعية في القياسات الكهروكيميائية

دليل مفصل عن الأقطاب الكهربائية المرجعية واستخدامها وصيانتها وطرق فحصها وتجديدها وتخزينها وتطبيقاتها.

اقرأ المزيد
إلكترود الجلايمركوري:التركيب والخصائص والتطبيقات

إلكترود الجلايمركوري:التركيب والخصائص والتطبيقات

نظرة متعمقة على قطب الزئبق الجلايمركوري وتكوينه وخصائصه وتطبيقاته في الكيمياء التحليلية.

اقرأ المزيد
استخدام الأقطاب الكهربائية المرجعية والعناية بها

استخدام الأقطاب الكهربائية المرجعية والعناية بها

دليل مفصل حول استخدام ومعايرة وصيانة الأقطاب الكهربائية المرجعية في الدراسات الكهروكيميائية.

اقرأ المزيد
تصميم الأقطاب الكهربائية المرجعية في بطاريات الليثيوم وتطبيقها في بطاريات الليثيوم

تصميم الأقطاب الكهربائية المرجعية في بطاريات الليثيوم وتطبيقها في بطاريات الليثيوم

تحليل متعمق لتصميم الأقطاب الكهربائية المرجعية في بطاريات الليثيوم وخصائصها وتطبيقاتها.

اقرأ المزيد
فهم الأقطاب الكهربائية في الأنظمة الكهروكيميائية: الأقطاب الكهربائية العاملة والمضادة والمرجعية

فهم الأقطاب الكهربائية في الأنظمة الكهروكيميائية: الأقطاب الكهربائية العاملة والمضادة والمرجعية

نظرة عامة على أدوار وخصائص الأقطاب الكهربائية العاملة والمضادة والمرجعية في الأنظمة الكهروكيميائية.

اقرأ المزيد
مبدأ تصميم الأقطاب الكهربائية المرجعية لبطاريات الليثيوم وتطبيقها

مبدأ تصميم الأقطاب الكهربائية المرجعية لبطاريات الليثيوم وتطبيقها

يناقش مبادئ التصميم والأنواع والتطبيقات والتوجهات المستقبلية للأقطاب الكهربائية المرجعية في بطاريات الليثيوم.

اقرأ المزيد
مقدمة عن الأقطاب الكهربائية ذات الأقراص الدوارة والتطبيقات الكهروكيميائية الشائعة

مقدمة عن الأقطاب الكهربائية ذات الأقراص الدوارة والتطبيقات الكهروكيميائية الشائعة

لمحة عامة عن الأقطاب الكهربائية ذات الأقراص الدوارة وتطبيقاتها في مختلف الدراسات الكهروكيميائية، بما في ذلك تقييم المحفزات وأبحاث البطاريات والحماية من التآكل.

اقرأ المزيد
أساسيات الكيمياء الكهربائية:شروط واحتياطات استخدام الأقطاب الكهربائية المرجعية المختلفة

أساسيات الكيمياء الكهربائية:شروط واحتياطات استخدام الأقطاب الكهربائية المرجعية المختلفة

دليل حول متطلبات وشروط استخدام الأقطاب المرجعية المختلفة في الكيمياء الكهربائية.

اقرأ المزيد
تحديد مشاكل القطب المرجعي السيئ في أنظمة القياس ومعالجتها

تحديد مشاكل القطب المرجعي السيئ في أنظمة القياس ومعالجتها

تناقش هذه المقالة علامات وحلول القطب المرجعي التالف في أنظمة القياس، مع التركيز على انخفاض جهد الأشعة تحت الحمراء والتحف عالية التردد وطرق تحديد القطب المرجعي التالف وحفظه.

اقرأ المزيد
تصميم وتطبيق الأقطاب الكهربائية المرجعية في بطاريات الليثيوم

تصميم وتطبيق الأقطاب الكهربائية المرجعية في بطاريات الليثيوم

تناقش هذه المقالة اختيار وتصميم الأقطاب الكهربائية المرجعية لبطاريات الليثيوم، مع التركيز على المواد النشطة مثل معدن الليثيوم وسبائك الليثيوم وأكاسيد الليثيوم المدمجة بالليثيوم.

اقرأ المزيد
فهم القطب الكهربائي القرصي الدوار: المبادئ والتطبيقات

فهم القطب الكهربائي القرصي الدوار: المبادئ والتطبيقات

يستكشف تطور ومبادئ وتطبيقات قطب القرص الدوار في الكيمياء الكهربائية.

اقرأ المزيد
التطورات الكهروكيميائية والتطبيقات الكهروكيميائية

التطورات الكهروكيميائية والتطبيقات الكهروكيميائية

نظرة عامة شاملة عن التطور التاريخي والتطورات النظرية والتطبيقات العملية للكيمياء الكهربائية.

اقرأ المزيد