يتم تصنيع الأنابيب النانوية الكربونية النانوية (CNTs) من خلال طرق مختلفة، حيث يعد الترسيب الكيميائي للبخار (CVD) الأكثر شيوعًا للإنتاج التجاري.
وتتضمن عملية الترسيب الكيميائي القابل للذوبان استخدام محفزات وغازات هيدروكربونية لتنمية الأنابيب النانوية الكربونية على الركيزة.
وتشمل الطرق الأخرى الاستئصال بالليزر، والتفريغ القوسي، والترسيب الكيميائي المعزز بالبلازما بالبخار (PECVD)، والذي يسمح بالتركيب في درجات حرارة منخفضة.
وتستكشف الأساليب الناشئة استخدام المواد الأولية الخضراء أو النفايات، مثل ثاني أكسيد الكربون المحتجز عن طريق التحليل الكهربائي في الأملاح المنصهرة أو التحلل الحراري للميثان، لإنتاج النانوتينات المدمجة مع تقليل التأثير البيئي إلى أدنى حد ممكن.
طرق التوليف:
1. الترسيب الكيميائي للبخار (CVD)
يُستخدم الترسيب الكيميائي بالترسيب بالبخار الكيميائي على نطاق واسع في الصناعة نظرًا لقابليته للتطوير وقدرته على إنتاج نترات CNTs عالية الجودة.
في عملية الترسيب الكيميائي القابل للتطويع على القسطرة (CVD)، يتم تعريض ركيزة مغطاة بجزيئات محفّز لغاز هيدروكربوني عند درجات حرارة عالية.
يتحلل الغاز على سطح المحفز، وتترسب ذرات الكربون لتكوين النانوتينات ثلاثية الأبعاد.
يمكن تحسين العملية عن طريق ضبط المعلمات مثل درجة الحرارة ومعدل تدفق الغاز ونوع المحفز.
2. الترسيب الكيميائي بالبخار المعزز بالبلازما (PECVD)
يستخدم الترسيب بالبخار الكيميائي المعزز بالبلازما لتعزيز التفاعل الكيميائي عند درجات حرارة منخفضة، مما يجعله مناسبًا لترسيب النانو كود على ركائز حساسة للحرارة مثل الزجاج.
وتعد هذه الطريقة واعدة للتطبيقات التي تتطلب معالجة في درجات حرارة منخفضة، مثل تكامل الإلكترونيات.
3. الاستئصال بالليزر وتفريغ القوس الكهربائي
هاتان الطريقتان هما الطريقتان السابقتان المستخدمتان في تخليق النانوتينات ثلاثية الأبعاد.
يستخدم الاستئصال بالليزر ليزر عالي الطاقة لتبخير هدف من الجرافيت.
ويتضمن تفريغ القوس الكهربائي توليد قوس كهربائي بين قطبين من الجرافيت.
وتنتج كلتا الطريقتين نترات CNTs ولكنهما أقل قابلية للتحكم والتوسع مقارنةً بالتفريغ القوسي الكهربائي.
4. الطرق الناشئة باستخدام مواد التغذية الخضراء أو النفايات
تشمل هذه الطرق عمليات مثل التحليل الكهربائي لثاني أكسيد الكربون في الأملاح المنصهرة والتحلل الحراري للميثان.
وتهدف هذه الطرق إلى تحويل غازات النفايات إلى نترات ثلاثية الأبعاد ذات قيمة، مما قد يقلل من الأثر البيئي ويوفر مصدراً مستداماً للكربون.
طرق التنقية:
تُعد تنقية ألياف CNTs أمرًا بالغ الأهمية لأن عملية التوليف غالبًا ما ينتج عنها مخاليط من ألياف CNTs ذات هياكل وأحجام مختلفة، بالإضافة إلى شوائب مثل الكربون غير المتبلور وجزيئات المحفزات المعدنية.
1. الأكسدة
استخدام عوامل مؤكسدة قوية مثل حمض النيتريك لحرق الشوائب بشكل انتقائي مع ترك النيتروز النفثالينات سليمة.
يمكن لهذه الطريقة أيضًا أن تجعل ألياف CNTs وظيفية مما يحسن قابليتها للذوبان والتفاعل.
2. تقنيات الفصل
بما في ذلك الطرد المركزي والكروماتوغرافيا والرحلان الكهربائي، والتي يمكن أن تفصل بين النانوتينات النفثالينات على أساس خصائصها الفيزيائية والكيميائية.
3. الطرق الميكانيكية
مثل الصوتيات والترشيح، والتي يمكن أن تفصل فيزيائيًا بين النانوتيدات الصنوبرية المدمجة من الشوائب.
تتطور طرق التوليف والتنقية هذه باستمرار لتحسين جودة واستدامة إنتاج النانوتينات النفثالينات المدمجة CNT، مما يجعلها أكثر قابلية للتطبيق في مجموعة واسعة من التطبيقات.
مواصلة الاستكشاف، استشر خبرائنا
اختبر أحدث ما توصلت إليه تكنولوجيا CNT مع KINTEK SOLUTION.
تم تصميم مجموعتنا الشاملة من منتجات وخدمات CNT، بما في ذلك أحدث طرق التوليف والتنقية، لتمكين تطبيقاتك البحثية والصناعية.
استكشف مستقبل المواد اليوم مع KINTEK SOLUTION - حيث تسير الجودة والمسؤولية البيئية جنبًا إلى جنب.
انضم إلى ثورتنا وارتقِ بمشاريعك إلى آفاق جديدة.