اكتشف الأسماء المختلفة لفرن الصندوق، بما في ذلك فرن الوعاء (retort) والفرن الكهربائي وفرن المقاومة، وتعلّم لماذا يعد مبدأ التسخين المعزول الخاص به أمرًا أساسيًا.
استكشف طرق ترسيب أشباه الموصلات مثل الترسيب الكيميائي للبخار (CVD) والترسيب الفيزيائي للبخار (PVD) وترسيب الطبقة الذرية (ALD). تعلم كيف تتم إضافة الأغشية الرقيقة إلى رقائق السيليكون لإنشاء الرقائق الدقيقة.
تعرف على كيفية قيام الترسيب الكيميائي للبخار (CVD) بزراعة أغشية رقيقة جدًا وعالية النقاء على رقائق السيليكون لإنشاء الطبقات الأساسية لأجهزة أشباه الموصلات.
اكتشف طرق تخليق المواد النانوية من الأعلى إلى الأسفل ومن الأسفل إلى الأعلى، بما في ذلك CVD، PVD، سول-جل، والطحن بالكرات، لاختيار التقنية المناسبة لاحتياجاتك.
تضيف الكربنة الكربون إلى سطح الفولاذ، مما يتيح تقسية السطح عن طريق التبريد السريع. تعرف على كيفية إنشائها لطبقة سطحية صلبة ولب داخلي متين للأجزاء المعمرة.
اكتشف أي أنواع الفولاذ، مثل الفولاذ منخفض الكربون والفولاذ المقاوم للصدأ الأوستنيتي، لا يمكن تقسيته بالمعالجة الحرارية بسبب نقص الكربون أو هياكل بلورية مستقرة.
أطلق العنان للإمكانات الكاملة لسبيكة Inconel 718 المطبوعة بتقنية SLM من خلال المعالجة الحرارية بالتفريغ. تعلم كيفية تحسين القوة والصلابة والبنية المجهرية.
تعرف على كيفية قيام مفاعلات الترسيب الكيميائي للبخار عالية الحرارة بتصنيع طلاءات TiN/TiC عند 1000 درجة مئوية لتوفير مقاومة فائقة للتآكل وتغطية سطح موحدة.
تعرف على كيف تتيح أفران الترسيب الكيميائي للبخار (CVD) ذات درجات الحرارة العالية التحفيز بالمعادن السائلة لنمو بلورات Mo2C خالية من العيوب ورقيقة للغاية عند درجات حرارة تزيد عن 1000 درجة مئوية.
اكتشف الخاصيتين الرئيسيتين لأنابيب الكربون النانوية: القوة الميكانيكية الاستثنائية والتوصيلية الكهربائية الفريدة، مما يتيح تطوير مواد وإلكترونيات متقدمة.
اكتشف كيف يرسب الترسيب الكيميائي بالبخار المعزز بالبلازما (PECVD) أغشية رقيقة عالية الجودة على المواد الحساسة للحرارة للإلكترونيات والخلايا الشمسية ومواد الكربون المتقدمة في درجات حرارة منخفضة.
تعرف على كيفية الاختيار بين عناصر التسخين المصنوعة من الجرافيت، والموليبدينوم، والكربون-كربون لفرن التفريغ الخاص بك بناءً على درجة الحرارة والنقاء واحتياجات الأداء.
تعرف على آلية نمو الترسيب الكيميائي للبخار المكونة من 5 خطوات: النقل، والامتزاز، والتفاعل، والدمج، والامتزاز. تحكم في نقاء الغشاء وسمكه وتجانسه لمختبرك.
تعرف على كيفية صهر الذهب عند درجة انصهاره البالغة 1064 درجة مئوية باستخدام الفرن المناسب. قارن بين أفران الحث وأفران الكتم من حيث النقاء والسرعة والكفاءة.
اكتشف كيف تمكّن السيراميك المصنوع من كربيد السيليكون وأكسيد الألومنيوم من التكسير الكهربائي عند درجات حرارة عالية (>1150 درجة مئوية)، مما يقلل وقت المكوث ويزيد من انتقائية الأوليفينات.
اكتشف تحولات الطور الرئيسية للكوارتز عند تسخينه، بما في ذلك نقطة كوري الحرجة عند 573 درجة مئوية، وكيفية تطبيق هذه المعرفة في الجيولوجيا والإلكترونيات والتصنيع.
اكتشف كيف تخلق عمليات الترسيب مثل الترسيب الكيميائي للبخار (CVD)، والترسيب الفيزيائي للبخار (PVD)، وترسيب الطبقة الذرية (ALD) الطبقات الموصلة والعازلة وشبه الموصلة الأساسية لتصنيع الدوائر المتكاملة الحديثة.
تعرف على كيفية التحكم في درجة حرارة الانحلال الحراري، ومعدل التسخين، ووقت مكوث الغاز لتحسين إنتاج الفحم الحيوي، أو الزيت الحيوي، أو الغاز الاصطناعي لاحتياجاتك المحددة.
يكتمل الانحلال الحراري السريع في أقل من ثانيتين. تعرّف على كيف تعمل هذه العملية السريعة على زيادة عائد الزيت الحيوي السائل من تحويل الكتلة الحيوية لتطبيقات الطاقة.
تعرف على كيفية موازنة درجة حرارة الترسيب الكيميائي للبخار المعزز بالبلازما (80-400 درجة مئوية) بين كثافة الفيلم والإجهاد للركائز مثل البوليمرات وأشباه الموصلات.
التحلل الحراري مقابل التغويز: إحدى العمليتين تنتج ثلاثة منتجات، والأخرى تزيد من إنتاج الغاز الاصطناعي. تعرف على الأنسب لاحتياجات تحويل الكتلة الحيوية لديك.
استكشف أنواع معدات التلبيد، بدءًا من الأفران التقليدية وحتى أنظمة التلبيد بالشرارة البلازمية (SPS) المتقدمة وأنظمة الضغط المتساوي الحرارة العالي (HIP).
تعتمد درجة حرارة التكليس على المادة المحددة، وعادة ما تتراوح بين 800 درجة مئوية و 1300 درجة مئوية. تعلم كيفية اختيار النطاق الصحيح للنقاء والكفاءة والأداء.
اكتشف كيف تمكّن تقنية الترسيب الكيميائي للبخار (CVD) من إنتاج أغشية رقيقة عالية النقاء وموحدة للإلكترونيات المتقدمة والمواد النانوية والطلاءات الصناعية.
تعرف على كيفية تمكين وقت بقاء الذرة الأطول وكفاءة الفرن الجرافيتي AA الأعلى من الكشف بمستوى جزء في المليار/جزء في التريليون مقارنة بنطاق جزء في المليون في اللهب AA.
اكتشف كيف يتيح ترسيب البخار الكيميائي المعزز بالبلازما (PECVD) طلاء الأغشية الرقيقة في درجات حرارة منخفضة للمواد الحساسة للحرارة مثل البلاستيك والإلكترونيات.
تعرّف على كيفية نمو أنابيب الكربون النانوية باستخدام الترسيب الكيميائي للبخار (CVD) عبر استخدام محفز لتحقيق تحكم وجودة وقابلية توسع فائقة في التطبيقات المتقدمة.
اكتشف الطرق الرئيسية الثلاث لتصنيع الأنابيب النانوية الكربونية: التفريغ القوسي، الاستئصال بالليزر، والترسيب الكيميائي للبخار (CVD). تعرف على الأفضل منها لنقاء البحث مقابل الإنتاج التجاري على نطاق واسع.
اكتشف الفوائد الرئيسية للترسيب الكيميائي للبخار (CVD)، بما في ذلك الطلاء الموحد للأشكال الهندسية المعقدة، والأغشية عالية النقاء، والتحكم الدقيق في خصائص المواد.
تعلم كيف تزيد عملية التقسية من صلابة الفولاذ وكيف تضيف عملية التطبيع المتانة. اكتشف عملية المعالجة الحرارية المكونة من خطوتين للحصول على مواد متينة وموثوقة.
استكشف تطور إنتاج أنابيب الكربون النانوية، من التفريغ القوسي إلى الترسيب الكيميائي للبخار (CVD) المهيمن والطرق الخضراء الناشئة مثل الانحلال الحراري للميثان.
استكشف التحديات الأساسية في الإنتاج الضخم لأنابيب الكربون النانوية (CNT): المفاضلة بين الحجم والنقاء والتكلفة. تعرف على سبب بقاء التحكم والتوحيد عقبات رئيسية.
تعرف على كيفية نمو أنابيب الكربون النانوية (CNTs) عن طريق الترسيب الكيميائي للبخار (CVD) من سلائف الغاز باستخدام المحفزات، مما يتيح إنتاجًا صناعيًا قابلاً للتطوير والتحكم.
تعرف على كيف يؤدي التجانس عند 1200 درجة مئوية في فرن الصندوق ذي درجة الحرارة العالية إلى إذابة الجسيمات الغنية بالتنجستن والقضاء على التباين في فولاذ الكروم بنسبة 12%.
تعرف على كيف تستخدم أنظمة ترسيب البخار الكيميائي (CVD) التحلل الحراري عند 1550 درجة مئوية والتحكم في تدفق الغاز لإنشاء هياكل متدرجة على المستوى الميكرو والنانو لمواد LDIP فائقة الكراهية للماء.