المدونة تقنية تحضير ونقل الجرافين بالترسيب الكيميائي للبخار الكيميائي
تقنية تحضير ونقل الجرافين بالترسيب الكيميائي للبخار الكيميائي

تقنية تحضير ونقل الجرافين بالترسيب الكيميائي للبخار الكيميائي

منذ 3 أسابيع

مقدمة عن الجرافين وطرق تحضيره

الخلفية التاريخية واكتشاف الجرافين

لطالما شكّلت دراسة المواد النانوية الكربونية نقطة محورية في المجتمع العلمي، لا سيما بعد اكتشاف الفوليرين والأنابيب النانوية الكربونية. ومن بين هذه المواد، يبرز الجرافين بوصفه مادة فريدة ومثيرة للاهتمام ثنائية الأبعاد. في البداية، اعتُبر الجرافين في البداية غير مستقر ديناميكيًا حراريًا بسبب بنيته المستوية، والتي تحدت الحكمة التقليدية حول حدود قدرات الكربون على الترابط.

ومع ذلك، في عام 2004، تحدت تجربة رائدة في جامعة مانشستر هذا الافتراض. فقد نجح العالمان أندريه غيم وكونستانتين نوفوسيلوف في عزل الجرافين عالي الجودة عن طريق تقشير رقائق من الجرافيت عالي التحلل الحراري (HOPG) باستخدام شريط لاصق. وأثبتت هذه الطريقة البسيطة والمبتكرة والمعروفة باسم "تقنية الشريط اللاصق" أن الجرافين لا يمكن أن يكون موجودًا فحسب، بل يمكن إنتاجه أيضًا في شكل مستقر وعالي الجودة.

وقد شكّل هذا الاكتشاف لحظة محورية في مجال علم المواد، ومنح جييم ونوفوسيلوف جائزة نوبل في الفيزياء عام 2010. لم يثبت عملهما صحة وجود الجرافين فحسب، بل فتح أيضًا آفاقًا جديدة للبحث والتطبيق، مما أثار موجة من الاهتمام بتطوير المواد المتقدمة القائمة على الكربون.

الجرافين

نظرة عامة على تقنيات تحضير الجرافين

تتوفر العديد من الطرق لتحضير الجرافين، ولكل منها مزايا وقيود متميزة فيما يتعلق بجودة المنتج والإنتاجية وقابلية التوسع. وتشمل هذه الطرق التقشير الشريطي والتقشير الكيميائي والنمو الفوقي للسيليكون والترسيب الكيميائي للبخار (CVD).

  • التقشير الشريطي: تتضمن هذه الطريقة تقشير طبقات الجرافين فيزيائيًا من الجرافين من الجرافيت السائب باستخدام شريط لاصق، وهي تقنية كان لها دور فعال في الاكتشاف الأولي للجرافين. ومع ذلك، فهي محدودة بسبب انخفاض إنتاجيتها وعدم قدرتها على إنتاج كميات كبيرة.

  • التقشير الكيميائي: تتضمن هذه العملية استخدام المذيبات والطاقة لفصل طبقات الجرافين عن الجرافيت. وعلى الرغم من أنها يمكن أن تنتج جرافين عالي الجودة، إلا أن العائد عادةً ما يكون منخفضًا، مما يتطلب طردًا مركزيًا لاحقًا لعزل رقائق الجرافين أحادية الطبقة وقليلة الطبقات.

  • النمو فوق الإبيتاكسالي للسيليكون: تعتمد هذه الطريقة على التحلل الحراري لركائز كربيد السيليكون (SiC) في ظروف تفريغ فائقة الارتفاع. وعلى الرغم من قدرتها على إنتاج جرافين عالي الجودة، إلا أنها مقيدة بالتكاليف المرتفعة والحاجة إلى كميات كبيرة من كربيد السيليكون، مما يجعل الإنتاج على نطاق واسع أمرًا صعبًا.

  • ترسيب البخار الكيميائي (CVD): يُعتبر الترسيب الكيميائي القابل للتطويع CVD الطريقة الأكثر كفاءة وقابلية للتطوير لإنتاج الجرافين على مساحة كبيرة. وهي تنطوي على تحلل الغازات الهيدروكربونية على ركائز معدنية، مثل النحاس أو النيكل، لتشكيل طبقات الجرافين. ويُفضَّل استخدام النحاس بشكل خاص كركيزة نظرًا لقدرته على دعم الترسيب الحصري للجرافين أحادي الطبقة. وقد دُرست المعادن الانتقالية مثل الكوبالت والنيكل والنحاس على نطاق واسع لملاءمتها لعمليات التفريغ القابل للذوبان بالقنوات القابلة للتحويل على مدار الساعة، على الرغم من أن المعادن الأخرى لم تضاهي كفاءتها من حيث التكلفة والجودة وقابلية النقل.

وتساهم كل طريقة من هذه الطرق بشكل فريد في مشهد تحضير الجرافين، حيث تقدم مجموعة من الحلول المصممة خصيصًا لتطبيقات ومقاييس إنتاج مختلفة.

الترسيب الكيميائي للبخار (CVD) لتحضير الجرافين

مبادئ وآليات الترسيب الكيميائي بالبخار

ترسيب البخار الكيميائي (CVD) هو تقنية متطورة تنطوي على تحلل المركبات المحتوية على الكربون في درجات حرارة عالية لتنمية الجرافين على ركائز مختلفة. وتُعد هذه العملية محورية في تركيب الجرافين عالي الجودة، وهو أمر ضروري لتطبيقاته التي لا تعد ولا تحصى في مختلف المجالات. يمكن تصنيف عملية التفكيك القابل للقطع CVD إلى آليتين أساسيتين: ترسيب الكربنة والنمو السطحي، وكل منهما مصممة خصيصًا لمواد الركيزة المختلفة.

آلية الترسيب بالكربنة: في هذه الآلية، تلعب مادة الركيزة دورًا حاسمًا في تكوين الجرافين. وتحفز درجات الحرارة المرتفعة تحلل السلائف المحتوية على الكربون، مما يؤدي إلى ترسيب ذرات الكربون على الركيزة. ثم تنتشر ذرات الكربون هذه وتتجمع لتكوين طبقات الجرافين. هذه الطريقة فعالة بشكل خاص للركائز التي يمكنها تحمل درجات الحرارة العالية وتوفر منصة مستقرة لتجميع ذرات الكربون.

آلية النمو السطحي: من ناحية أخرى، تركز آلية النمو السطحي على التفاعل بين سلائف الكربون وسطح الركيزة. وهنا، تؤثر كيمياء سطح الركيزة وتضاريسها بشكل كبير على عملية النمو. حيث تتفاعل ذرات الكربون من السلائف المتحللة مع سطح الركيزة لتكوين طبقات الجرافين من خلال سلسلة من التفاعلات السطحية وإعادة البناء. وغالبًا ما يتم استخدام هذه الآلية للركائز التي تتطلب درجات حرارة معالجة منخفضة أو لها خصائص سطح محددة تسهل نمو الجرافين.

ويعتمد اختيار الآلية على عدة عوامل، بما في ذلك نوع مادة الركيزة وجودة الجرافين المطلوبة ومتطلبات التطبيق المحددة. ويُعد فهم هذه المبادئ والآليات أمرًا ضروريًا لتحسين عملية CVD لتحقيق إنتاج الجرافين عالي الجودة والقابل للتطوير.

طريقة الترسيب بالبخار الكيميائي للجرافين

التطورات في تقنيات النمو بالتقنية CVD

عززت التطورات الحديثة في تقنيات الترسيب الكيميائي للبخار (CVD) بشكل كبير من جودة إنتاج الجرافين وقابليته للتطوير. وتُعزى هذه التحسينات إلى حد كبير إلى استكشاف مصادر الكربون المتنوعة وركائز النمو وظروف النمو المحسّنة. على سبيل المثال، أثبت استخدام رقائق النحاس (Cu) فعاليته في إنتاج الجرافين أحادي الطبقة ذي المساحة الكبيرة، وهو أمر ضروري للتطبيقات الصناعية.

ويتمثل أحد التطورات الملحوظة في اعتماد غازات سلائف بديلة، مثل الأطر المعدنية العضوية (MOFs) والترسيب الكيميائي المعدني العضوي بالبخار (MOCVD). وتوفر الأطر المعدنية العضوية، المعروفة بهيكلها المسامي، إمكانات في تخزين الغازات وفصلها، في حين أن الترسيب الكيميائي بالبخار المعدني العضوي يوسع من تنوع الترسيب الكيميائي القابل للسحب على مدار الساعة من خلال استخدام المركبات العضوية المعدنية كغازات سليفة. ويعد هذا الابتكار واعدًا بشكل خاص لتصنيع مواد متقدمة مثل أشباه الموصلات III-V.

وعلاوة على ذلك، أحدث تكامل أنظمة التحكم المتقدمة ثورة في عملية الحرق المقطعي بالبطاريات CVD. وتتيح أنظمة التحكم في التغذية الراجعة الآن مراقبة معدلات تدفق الغازات السليفة ودرجات حرارة غرفة التفاعل وتعديلها في الوقت الفعلي. ويضمن هذا التحكم الديناميكي اتساق وجودة الأفلام المودعة، مما يقلل من هدر المواد ويعزز كفاءة العملية. ولا تقتصر هذه القفزات التكنولوجية على تحسين المنهجيات الحالية للتفكيك المقطعي على القالب CVD فحسب، بل تمهد الطريق للابتكارات المستقبلية في إنتاج الجرافين.

تقنية نقل الجرافين

أهمية وتحديات نقل الجرافين

يُعد نقل الجرافين من ركيزة نموه إلى الركيزة المستهدفة خطوة حاسمة في تطبيقه وتوصيفه. وتُعد هذه العملية ضرورية للاستفادة من خصائص الجرافين الفريدة في مختلف المجالات، بما في ذلك الإلكترونيات والبصريات والمركبات. ومع ذلك، تنطوي عملية النقل على العديد من التحديات التي يجب معالجتها لضمان سلامة الجرافين المنقول ووظائفه.

ويتمثل أحد التحديات الرئيسية في الحفاظ على السلامة الهيكلية للجرافين أثناء النقل. فالجرافين مادة حساسة يمكن أن تتضرر بسهولة بسبب الإجهاد الميكانيكي، مما يؤدي إلى تكوين شقوق وثقوب وتجاعيد. ولا تؤدي هذه العيوب إلى الإضرار بأداء المادة فحسب، بل تعيق أيضًا تكاملها في الأجهزة الوظيفية. ولذلك، يجب أن يضمن النقل المثالي استمرارية طبقة الجرافين دون إحداث مثل هذه الأضرار الميكانيكية.

وهناك تحدٍ كبير آخر يتمثل في تجنب التلوث أثناء عملية النقل. فغالبًا ما يتطلب الجرافين المزروع على ركائز معدنية النقل إلى ركائز غير معدنية للتطبيق. ومع ذلك، يمكن أن تؤدي عملية النقل إلى إدخال بقايا وشوائب، مثل أيونات المعادن أو الملوثات العضوية، والتي يمكن أن تغير الخصائص الإلكترونية للجرافين. ومن الضروري ضمان بقاء الجرافين المنقول نظيفاً وخالياً من هذه الملوثات للحفاظ على خصائصه الجوهرية.

وقد تم تطوير عدة طرق نقل لمعالجة هذه التحديات، ولكل منها مجموعة من المزايا والقيود الخاصة بها. ويمكن تصنيف هذه الطرق بشكل عام إلى تقنيات النقل لمرة واحدة وتقنيات النقل لمرتين. في النقل لمرة واحدة، يتم لصق الجرافين مباشرةً بالركيزة المستهدفة، بينما في النقل لمرتين، يتم استخدام فيلم ناقل لتسهيل النقل من الركيزة النامية إلى الركيزة المستهدفة. بالإضافة إلى ذلك، يمكن تصنيف طرق النقل بناءً على ما إذا كانت تتضمن إذابة الركيزة النامية (نقل الركيزة المذابة) أو فصلها ميكانيكيًا أو كهروكيميائيًا (نقل الركيزة المنفصلة). وغالبًا ما يكون الأخير أكثر فعالية من حيث التكلفة حيث يمكن إعادة استخدام ركيزة النمو.

النقل النظيف لأفلام الجرافين المترسبة بالبخار الكيميائي
النقل النظيف لأفلام الجرافين المودعة بالبخار الكيميائي

باختصار، يعتبر نقل الجرافين خطوة محورية في تطبيقه، مما يستلزم النظر بعناية في كل من السلامة الهيكلية ومنع التلوث. ويُعد تطوير طرق نقل موثوقة ومستقرة ومنخفضة التكلفة أمرًا ضروريًا لتصنيع التقنيات القائمة على الجرافين.

طرق وتقنيات نقل الجرافين

يتطلب الجرافين، الذي ينمو على ركائز معدنية، عمليات نقل دقيقة لتطبيقه على ركائز مستهدفة، عادةً ما تكون غير معدنية، للاستخدام العملي. وينبغي أن تدعم عملية النقل المثالية ثلاث خصائص أساسية: الحفاظ على استمرارية الفيلم دون تلف ميكانيكي، وضمان بقاء الفيلم خاليًا من البقايا وغير مخدر، وأن يكون مستقرًا وفعالًا من حيث التكلفة من أجل قابلية التوسع الصناعي.

تم تطوير العديد من طرق النقل، ولكل منها مزايا وقيود فريدة من نوعها. ويمكن تصنيف هذه الطرق بشكل عام إلى عمليات نقل لمرة واحدة وعمليات نقل لمرتين. في عملية النقل لمرة واحدة، يتم لصق الجرافين مباشرةً بالركيزة المستهدفة، بينما تستخدم عملية النقل لمرتين طبقة حاملة لتسهيل الحركة من الركيزة النامية إلى الركيزة المستهدفة. بالإضافة إلى ذلك، يمكن تصنيف الطرق على أنها نقل الركيزة المذابة أو نقل الركيزة المنفصلة. ينطوي نقل الركيزة المذابة على إذابة الركيزة النامية باستخدام مادة مذيبة لفصل الجرافين، في حين يستخدم نقل الركيزة المنفصلة وسائل ميكانيكية أو كهروكيميائية لتحقيق الفصل. وغالبًا ما تكون الطريقة الأخيرة أكثر فعالية من حيث التكلفة حيث يمكن إعادة استخدام الركيزة.

طريقة النقل الوصف المزايا القيود
النقل لمرة واحدة الالتصاق المباشر للجرافين بالركيزة المستهدفة بسيط ومباشر عرضة للتلف الميكانيكي
النقل لمرتين استخدام غشاء ناقل لنقل الجرافين يقلل من الإجهاد الميكانيكي أكثر تعقيداً، ويتطلب خطوات إضافية
نقل الركيزة المذابة إذابة ركيزة النمو باستخدام مادة مذيبة فصل فعال فقدان الركيزة واحتمالية وجود بقايا
نقل الركيزة المنفصلة الفصل الميكانيكي أو الكهروكيميائي يمكن إعادة استخدام الركيزة، فعالة من حيث التكلفة يتطلب تحكماً دقيقاً لتجنب التلف

تهدف هذه الطرق مجتمعةً إلى معالجة تحديات نقل الجرافين دون المساس بسلامته الهيكلية أو إدخال ملوثات، وبالتالي تمكين تطبيقه في مختلف مجالات التكنولوجيا الفائقة.

الآفاق والتطبيقات المستقبلية للجرافين بالتقنية CVD

الاستخدامات المحتملة للجرافين بالتقطيع CVD

من المتوقع أن يُحدث الجرافين بالتقنية CVD، بخصائصه الاستثنائية، ثورة في العديد من الصناعات، من الإلكترونيات إلى الطب الحيوي. وتمتد تطبيقاته المحتملة عبر طيف واسع، بما في ذلك تطوير الأغشية الموصلة الشفافة والأجهزة الإلكترونية المتقدمة والإلكترونيات المرنة. أما في قطاع الطب الحيوي، فيتم استكشاف الجرافين بتقنية CVD لاستخدامه في أجهزة الاستشعار البيولوجية وتقنيات التصوير وأجهزة المراقبة وحتى ضمادات الجروح. والجدير بالذكر أن قدرته على تعزيز الأدوية والعلاجات العلاجية، لا سيما لمرضى السرطان، تؤكد على إمكاناته التحويلية في مجال الرعاية الصحية.

أما في مجال الإلكترونيات، فيتم تسخير الجرافين بتقنية CVD لتصميم البنى المتغايرة مع أشباه الموصلات وبنى فان دير فال المتغايرة القائمة على مواد ثنائية الأبعاد. ويمتد هذا الابتكار إلى مجالات علمية وصناعية مختلفة مثل الذواكر غير المتطايرة والإلكترونيات الضوئية والأنظمة الميكانيكية النانوية والوصلات البينية والإلكترونيات الحيوية والإدارة الحرارية. بالإضافة إلى ذلك، تبرز أجهزة الكشف الضوئي القائمة على الجرافين والصمامات الثنائية الباعثة للضوء والخلايا الشمسية كتطبيقات واعدة نظراً لأدائها المتفوق في الأقطاب الكهربائية الشفافة والطبقات النشطة المستخدمة في الأجهزة الكهروضوئية.

ستركز الأبحاث المستقبلية على الأرجح على تحسين جودة الجرافين بتقنية CVD وقابليته للتطوير بهدف تلبية متطلبات التطبيقات الصناعية واسعة النطاق. ومع استمرار تطور هذه التقنية، سيصبح إنتاج الجرافين على نطاقات أكبر ومساحات سطح أكبر ممكنًا بشكل متزايد، مدفوعًا بالتقدم في تقنيات القطع القابل للتحويل على القالب CVD. ومن المتوقع أن يفتح هذا التطور آفاقًا جديدة في التطبيقات التكنولوجية والصناعية على حد سواء، مما يجعل الجرافين بالتقنية CVD حجر الزاوية في الابتكار المستقبلي.

اتجاهات البحث في مجال الجرافين بالقطع CVD

تَعِد الأبحاث المستقبلية في مجال الجرافين بالقطع CVD بفتح آفاق جديدة في علوم المواد والتكنولوجيا. وتشمل مجالات التركيز الرئيسية تطوير تقنيات إنتاج الجرافين أحادي البلورة بمساحة كبيرة وتطوير شرائط الجرافين ذات الخصائص الإلكترونية الدقيقة وإنشاء هياكل جرافين ماكروسكوبية ذات خصائص ميكانيكية وكهربائية محسّنة. لا تهدف هذه الابتكارات إلى تحسين قابلية وجودة إنتاج الجرافين فحسب، بل تهدف أيضًا إلى توسيع نطاق تطبيقاته في مختلف الصناعات.

الاتجاهات البحثية للجرافين المترسب بالبخار الكيميائي

وعلاوة على ذلك، يكتسب استكشاف طرق نمو الجرافين في درجات حرارة منخفضة على ركائز متنوعة زخمًا متزايدًا. ويسعى هذا النهج إلى التخفيف من القيود التي تفرضها العمليات التقليدية ذات درجة الحرارة العالية للتقنية CVD، والتي يمكن أن تكون باهظة بالنسبة لبعض مواد الركائز. ومن خلال خفض درجة حرارة النمو، يأمل الباحثون في توسيع نطاق الركائز المتوافقة، وبالتالي تسهيل دمج الجرافين في مجموعة أوسع من الأجهزة الإلكترونية والإلكترونية الضوئية.

وبالإضافة إلى هذه التطورات التقنية، يُعدّ تطوير البنى المتغايرة القائمة على الجرافين طريقاً واعداً آخر. وتوفر هذه البنى المتغايرة، التي تجمع بين الجرافين ومواد أخرى ثنائية الأبعاد، إمكانية إنشاء فئات جديدة من الأجهزة ذات الخصائص الفريدة. على سبيل المثال، يمكن أن يؤدي دمج الجرافين مع أشباه الموصلات ومواد فان دير فال إلى تحقيق اختراقات في الذاكرة غير المتطايرة والإلكترونيات الضوئية والأنظمة الميكانيكية النانوية.

كما أن الجهود البحثية الجارية مدفوعة بالحاجة إلى معالجة الحقائق التجارية لإنتاج الجرافين. وعلى الرغم من أن الجرافين بالقطع القابل للذوبان على السيرة الذاتية أظهر نتائج واعدة كحل لإنتاج طبقات أحادية مثالية في عملية مستمرة وفعالة من حيث التكلفة، إلا أن الرحلة من المختبر إلى النطاق الصناعي كانت محفوفة بالتحديات. ومع نضوج هذه التقنية، يركز الباحثون بشكل متزايد على سد هذه الفجوة، مما يضمن أن يصبح حلم إنتاج الجرافين عالي الجودة على نطاق واسع حقيقة تجارية.

اتصل بنا للحصول على استشارة مجانية

تم الاعتراف بمنتجات وخدمات KINTEK LAB SOLUTION من قبل العملاء في جميع أنحاء العالم. سيسعد موظفونا بمساعدتك في أي استفسار قد يكون لديك. اتصل بنا للحصول على استشارة مجانية وتحدث إلى أحد المتخصصين في المنتج للعثور على الحل الأنسب لاحتياجات التطبيق الخاص بك!

المنتجات ذات الصلة

فرن أنبوبة CVD ذو الحجرة المنقسمة مع ماكينة التفريغ بالبطاريات القابلة للتفريغ بالقنوات المرارية

فرن أنبوبة CVD ذو الحجرة المنقسمة مع ماكينة التفريغ بالبطاريات القابلة للتفريغ بالقنوات المرارية

فرن CVD ذو حجرة مجزأة فعالة ذات حجرة مجزأة مع محطة تفريغ لفحص العينة بسهولة وتبريد سريع. درجة حرارة قصوى تصل إلى 1200 درجة مئوية مع تحكم دقيق في مقياس التدفق الكتلي MFC.

معدات رسم طلاء نانو الماس HFCVD

معدات رسم طلاء نانو الماس HFCVD

يستخدم قالب سحب الطلاء المركب بالماس النانوي المركب كربيد الأسمنت (WC-Co) كركيزة، ويستخدم طريقة طور البخار الكيميائي (طريقة CVD للاختصار) لطلاء الطلاء المركب التقليدي بالماس والماس النانوي المركب على سطح الثقب الداخلي للقالب.

صنع العميل آلة CVD متعددة الاستخدامات لفرن أنبوب CVD

صنع العميل آلة CVD متعددة الاستخدامات لفرن أنبوب CVD

احصل على فرن CVD الخاص بك مع الفرن متعدد الاستخدامات KT-CTF16. وظائف انزلاق ودوران وإمالة قابلة للتخصيص للحصول على تفاعلات دقيقة. اطلب الان!

فرن أنبوب منزلق PECVD مع آلة تغويز سائل PECVD

فرن أنبوب منزلق PECVD مع آلة تغويز سائل PECVD

KT-PE12 Slide PECVD System: نطاق طاقة واسع ، تحكم في درجة الحرارة قابل للبرمجة ، تسخين / تبريد سريع مع نظام انزلاقي ، تحكم في التدفق الكتلي MFC ومضخة تفريغ.

CVD البورون مخدر الماس

CVD البورون مخدر الماس

الماس المغطى بالبورون CVD: مادة متعددة الاستخدامات تتيح التوصيل الكهربائي المخصص والشفافية البصرية والخصائص الحرارية الاستثنائية للتطبيقات في مجال الإلكترونيات والبصريات والاستشعار وتقنيات الكم.

آلة رنان الجرس MPCVD لنمو المختبر والماس

آلة رنان الجرس MPCVD لنمو المختبر والماس

احصل على أغشية ألماس عالية الجودة باستخدام آلة Bell-jar Resonator MPCVD المصممة لنمو المختبر والماس. اكتشف كيف يعمل ترسيب البخار الكيميائي بالبلازما الميكروويف على زراعة الماس باستخدام غاز الكربون والبلازما.

آلة طلاء PECVD بترسيب التبخر المحسن بالبلازما

آلة طلاء PECVD بترسيب التبخر المحسن بالبلازما

قم بترقية عملية الطلاء الخاصة بك باستخدام معدات الطلاء PECVD. مثالية لمصابيح LED وأشباه موصلات الطاقة والنظم الكهروميكانيكية الصغرى والمزيد. يودع أغشية صلبة عالية الجودة في درجات حرارة منخفضة.

فرن أنبوبة CVD متعدد مناطق التسخين المتعدد CVD فرن CVD الأنبوبية

فرن أنبوبة CVD متعدد مناطق التسخين المتعدد CVD فرن CVD الأنبوبية

فرن KT-CTF14 متعدد مناطق التسخين CVD - تحكم دقيق في درجة الحرارة وتدفق الغاز للتطبيقات المتقدمة. درجة حرارة قصوى تصل إلى 1200 درجة مئوية، ومقياس تدفق الكتلة MFC بـ 4 قنوات، وجهاز تحكم بشاشة TFT تعمل باللمس مقاس 7 بوصة.

آلة فرن أنبوب الترسيب الكيميائي المحسن بالبلازما الدوارة المائلة (PECVD)

آلة فرن أنبوب الترسيب الكيميائي المحسن بالبلازما الدوارة المائلة (PECVD)

نقدم فرن PECVD الدوار المائل من أجل ترسيب دقيق للغشاء الرقيق. استمتع بمصدر المطابقة التلقائية ، والتحكم في درجة الحرارة القابل للبرمجة PID ، والتحكم في مقياس تدفق الكتلة MFC عالي الدقة. ميزات أمان مدمجة لراحة البال.

RF PECVD نظام تردد الراديو ترسيب البخار الكيميائي المحسن بالبلازما

RF PECVD نظام تردد الراديو ترسيب البخار الكيميائي المحسن بالبلازما

RF-PECVD هو اختصار لعبارة "ترسيب البخار الكيميائي المعزز ببلازما التردد اللاسلكي." ترسب مادة DLC (فيلم الكربون الشبيه بالماس) على ركائز الجرمانيوم والسيليكون. يتم استخدامه في نطاق الطول الموجي للأشعة تحت الحمراء 3-12um.

طلاء الماس CVD

طلاء الماس CVD

طلاء الماس CVD: موصلية حرارية فائقة وجودة كريستالية والتصاق لأدوات القطع والاحتكاك والتطبيقات الصوتية

CVD Diamond للإدارة الحرارية

CVD Diamond للإدارة الحرارية

ألماس CVD للإدارة الحرارية: ألماس عالي الجودة مع موصلية حرارية تصل إلى 2000 واط/م ك، مثالي لموزعات الحرارة، وثنائيات الليزر، وتطبيقات GaN على الماس (GOD).

ماكينة ألماس MPCVD 915 ميجا هرتز

ماكينة ألماس MPCVD 915 ميجا هرتز

915 ميجا هرتز MPCVD الماس آلة الماس 915MHz ونموها الفعال متعدد البلورات، يمكن أن تصل المساحة القصوى إلى 8 بوصات، ويمكن أن تصل مساحة النمو الفعال القصوى للبلورة الواحدة إلى 5 بوصات. تُستخدم هذه المعدات بشكل أساسي لإنتاج أفلام الماس متعدد الكريستالات كبيرة الحجم، ونمو الماس أحادي البلورة الطويل، ونمو الجرافين عالي الجودة في درجات حرارة منخفضة، وغيرها من المواد التي تتطلب طاقة توفرها بلازما الميكروويف للنمو.

القباب الماسية CVD

القباب الماسية CVD

اكتشف القباب الماسية CVD، الحل الأمثل لمكبرات الصوت عالية الأداء. توفر هذه القباب، المصنوعة باستخدام تقنية DC Arc Plasma Jet، جودة صوت استثنائية ومتانة ومعالجة للطاقة.

فرن الرسم الجرافيتي العمودي الكبير

فرن الرسم الجرافيتي العمودي الكبير

فرن الجرافيت العمودي الكبير ذو درجة الحرارة العالية هو نوع من الأفران الصناعية المستخدمة لجرافت المواد الكربونية، مثل ألياف الكربون وأسود الكربون. إنه فرن عالي الحرارة يمكن أن يصل إلى درجات حرارة تصل إلى 3100 درجة مئوية.

شعاع الإلكترون التبخر الجرافيت بوتقة

شعاع الإلكترون التبخر الجرافيت بوتقة

تقنية تستخدم بشكل رئيسي في مجال إلكترونيات الطاقة. إنه فيلم جرافيت مصنوع من مادة مصدر الكربون عن طريق ترسيب المواد باستخدام تقنية شعاع الإلكترون.

لوح كربون زجاجي - RVC

لوح كربون زجاجي - RVC

اكتشف لوح الكربون الزجاجي لدينا - RVC. مثالية لتجاربك ، هذه المادة عالية الجودة سترفع مستوى بحثك إلى المستوى التالي.

لوحة الكربون الجرافيت - متوازنة

لوحة الكربون الجرافيت - متوازنة

يتم ضغط الجرافيت الكربوني المتساوي الساكن من الجرافيت عالي النقاء. إنها مادة ممتازة لتصنيع فوهات الصواريخ ومواد التباطؤ والمواد العاكسة لمفاعل الجرافيت.

الأشعة تحت الحمراء طلاء طلاء الياقوت ورقة / الركيزة الياقوت / نافذة الياقوت

الأشعة تحت الحمراء طلاء طلاء الياقوت ورقة / الركيزة الياقوت / نافذة الياقوت

مصنوعة من الياقوت ، وتتميز الركيزة بخصائص كيميائية وبصرية وفيزيائية لا مثيل لها. تتميز بمقاومتها الرائعة للصدمات الحرارية ودرجات الحرارة المرتفعة وتآكل الرمال والمياه.

بوتقة تبخر الجرافيت

بوتقة تبخر الجرافيت

أوعية للتطبيقات ذات درجات الحرارة العالية ، حيث يتم الاحتفاظ بالمواد في درجات حرارة عالية للغاية حتى تتبخر ، مما يسمح بترسيب الأغشية الرقيقة على ركائز.

رف تنظيف الركيزة الزجاجية الموصلة PTFE

رف تنظيف الركيزة الزجاجية الموصلة PTFE

يتم استخدام رف تنظيف الركيزة الزجاجية الموصلة PTFE كحامل لرقائق السيليكون ذات الخلايا الشمسية المربعة لضمان معالجة فعالة وخالية من التلوث أثناء عملية التنظيف.

مفاعل التخليق الحراري المائي لمفاعل التخليق الحراري المائي لورق الكربون متعدد رباعي فلورو الإيثيلين ونمو نانو القماش الكربوني

مفاعل التخليق الحراري المائي لمفاعل التخليق الحراري المائي لورق الكربون متعدد رباعي فلورو الإيثيلين ونمو نانو القماش الكربوني

تركيبات البولي تترافلوروإيثيلين التجريبية المقاومة للأحماض والقلويات تلبي المتطلبات المختلفة. هذه المادة مصنوعة من مادة بولي تترافلوروإيثيلين جديدة تمامًا، والتي تتمتع بثبات كيميائي ممتاز، ومقاومة ممتازة للتآكل، ومقاومة للتآكل، وإحكام الإغلاق، وتزييت عالٍ وعدم الالتصاق، والتآكل الكهربائي وقدرة جيدة على مقاومة الشيخوخة، ويمكن أن تعمل لفترة طويلة في درجات حرارة تتراوح من -180 ℃ إلى +250 ℃.

رف تخزين زجاج ITO/FTO/رف تخزين زجاج ITO/رف تخزين رقائق السيليكون

رف تخزين زجاج ITO/FTO/رف تخزين زجاج ITO/رف تخزين رقائق السيليكون

يمكن استخدام رف التخزين الزجاجي ITO/FTO/رف تخزين الزجاج/رف تخزين رقائق السيليكون لتغليف الشحنات ودوران وتخزين رقائق السيليكون والرقائق ورقائق الجرمانيوم والرقائق الزجاجية ورقائق الياقوت وزجاج الكوارتز وغيرها من المواد.

الفراغات أداة القطع

الفراغات أداة القطع

أدوات القطع الماسية CVD: مقاومة فائقة للتآكل، واحتكاك منخفض، وموصلية حرارية عالية للمواد غير الحديدية، والسيراميك، وتصنيع المركبات

قوالب سحب الأسلاك الماسية CVD

قوالب سحب الأسلاك الماسية CVD

قوالب سحب الأسلاك الماسية CVD: صلابة فائقة، ومقاومة للتآكل، وقابلية للتطبيق في سحب الأسلاك بمواد مختلفة. مثالية لتطبيقات تصنيع التآكل الكاشطة مثل معالجة الجرافيت.


اترك رسالتك