تعلم كيفية تحضير العينات الصلبة والسائلة والغازية للتحليل الطيفي بالأشعة تحت الحمراء باستخدام أقراص بروميد البوتاسيوم (KBr) وألواح الملح والخلايا الغازية للحصول على أطياف واضحة ودقيقة.
اكتشف لماذا يعتبر بروميد البوتاسيوم (KBr) هو المادة المفضلة للتحليل الطيفي بالأشعة تحت الحمراء، حيث يوفر شفافية واسعة للأشعة تحت الحمراء، وسهولة في تشكيل الأقراص، ونتائج موثوقة.
تعرف على طرق إعداد العينات الصحيحة لطيف الأشعة تحت الحمراء للمواد الصلبة والسائلة والغازية للحصول على أطياف واضحة وقابلة للتفسير وتجنب الأخطاء الشائعة.
تعرف على كيفية تمكين الترسيب الكيميائي للبخار المعزز بالبلازما (PECVD) لطلاء الأغشية الرقيقة بدرجة حرارة منخفضة على المواد الحساسة للحرارة مثل البلاستيك والإلكترونيات.
اكتشف الدور الحاسم لدرجة الحرارة في عمليات الترسيب بالبخار الكيميائي (CVD)، بدءًا من نطاقات درجات الحرارة العالية القياسية وصولًا إلى تقنيات درجات الحرارة المنخفضة المتقدمة للركائز الحساسة.
تعرف على كيفية عمل مفاعل الترسيب الكيميائي للبخار (CVD)، بدءًا من تدفق غازات السلائف (المواد الأولية) وحتى التفاعل السطحي، للحصول على طلاءات دقيقة للأغشية الرقيقة.
CVD تعني الترسيب الكيميائي للبخار (Chemical Vapor Deposition). تعرف على كيفية قيام مفاعل CVD بإنشاء أغشية رقيقة عالية الأداء لأشباه الموصلات والمواد المتقدمة والمزيد.
الماس المصنوع في المختبر متين بنفس قدر الماس الطبيعي. كلاهما متطابق كيميائيًا، ويحقق درجة 10/10 على مقياس موس للصلابة، ويتشاركان في نفس الخصائص الفيزيائية.
يعمل طلاء PVD عند درجات حرارة تتراوح بين 200 درجة مئوية و 500 درجة مئوية، مما يحافظ على سلامة الركيزة للأجزاء الحساسة للحرارة مثل الأدوات والغرسات الطبية.
يتراوح نطاق درجة حرارة طلاء الترسيب الفيزيائي للبخار (PVD) من 200-400 درجة مئوية للمعادن إلى درجة حرارة قريبة من درجة حرارة الغرفة للبلاستيك. تعرف على كيف تفيد هذه المرونة موادك.
تعرف على كيفية تطبيق الطلاءات البصرية عبر الترسيب الفيزيائي للبخار (PVD) والترسيب الكيميائي للبخار (CVD) في حجرات التفريغ العالي للحصول على أغشية رقيقة دقيقة ومتينة وعالية الأداء.
استكشف الاستخدامات الأساسية للطلاءات البصرية، بدءًا من طلاءات منع الانعكاس (AR) للعدسات ووصولاً إلى المرشحات للأجهزة الطبية والطبقات الموصلة لشاشات اللمس.
اكتشف كيفية اختيار أفضل طبقات العدسات الواقية. تعرف على سبب أهمية الطبقة المضادة للانعكاس، ومتى يجب إضافة طبقة حماية من الضوء الأزرق، أو مقاومة الخدش، أو التلوين المتغير (فوتوكروميك).
اكتشف الاستخدامات الرئيسية للفرن الصندوقي لعمليات التكليس (الترميد)، والمعالجة الحرارية، وإعداد العينات. تعرف على كيف يضمن تصميمه تسخينًا خاليًا من التلوث.
استكشف مستقبل الماس المصنوع بالترسيب الكيميائي للبخار: توسيع نطاق رقائق البلورات المفردة لأشباه الموصلات والسيطرة على الإدارة الحرارية في الإلكترونيات عالية الطاقة.
تعرف على كيفية نمو أغشية الماس المتينة لطلاء الأدوات والأجزاء المقاومة للتآكل باستخدام عملية بسيطة وقابلة للتطوير بواسطة الترسيب الكيميائي للبخار بالفتيل الساخن (HFCVD).
تعرف على كيفية تحويل الانحلال الحراري للكتلة الحيوية للنفايات العضوية إلى طاقة نظيفة: الغاز الاصطناعي للطاقة، والزيت الحيوي للوقود، والفحم الحيوي لتحسين التربة.
تعرف على آلية الانحلال الحراري للكتلة الحيوية المكونة من 3 مراحل: كيف تتحكم درجة الحرارة ومعدل التسخين ووقت بقاء الأبخرة في إنتاجية الفحم الحيوي والزيت الحيوي والغاز الحيوي.
تعرف على كيفية عمل الانحلال الحراري التقليدي، ومنتجاته الرئيسية (الفحم الحيوي، والزيت الحيوي، والغاز الاصطناعي)، ومتى يجب استخدامه للحصول على أفضل النتائج.
تعرف كيف يتحكم معدل الانحلال الحراري في إنتاجية المنتج. قم بتحسين معدل التسخين ودرجة الحرارة ووقت المكوث لزيادة إنتاج الفحم الحيوي أو الزيت الحيوي أو الغاز الاصطناعي إلى أقصى حد.
اكتشف كيف يوفر الانحلال الحراري بالميكروويف سرعة فائقة وكفاءة في استخدام الطاقة وتحكمًا في العملية لتحويل النفايات العضوية إلى وقود حيوي ومواد كيميائية.
يعمل الانحلال الحراري بالميكروويف عند 400-900 درجة مئوية لتحويل الكتلة الحيوية بكفاءة. اكتشف كيف توفر التدفئة الداخلية تحكمًا فائقًا في إنتاج الزيت الحيوي والفحم الحيوي والغاز الاصطناعي.
اكتشف كيف يستخدم الانحلال الحراري بالميكروويف التسخين الداخلي لتحويل الكتلة الحيوية والبلاستيك إلى وقود ومواد كيميائية بشكل أسرع وأكثر كفاءة من الطرق التقليدية.
تعرف على كيفية إعادة تدوير البولي بروبيلين بالانحلال الحراري بالميكروويف إلى وقود ومواد كيميائية باستخدام تسخين سريع وفعال من حيث الطاقة في بيئة خالية من الأكسجين.
اكتشف كيف يستخدم التحلل الحراري بمساعدة الميكروويف التسخين الداخلي لتحويل الكتلة الحيوية/البلاستيك بشكل أسرع وأكثر كفاءة في استهلاك الطاقة إلى زيت حيوي وغاز اصطناعي وفحم حيوي.
تحدد درجة حرارة الانحلال الحراري التقليدي (400-900 درجة مئوية) مردود المنتج: الفحم الحيوي، أو الزيت الحيوي، أو الغاز الاصطناعي. تعرّف على كيفية التحسين لتحقيق هدفك.
تعرف على كيفية استخدام الانحلال الحراري للحرارة الخارجية للبدء وكيف يمكن أن يصبح ذاتي الاستدامة باستخدام غاز التخليق الخاص به، مما يحسن توازن الطاقة لمشروعك.
تعرف على كيفية تحديد درجة حرارة الانحلال الحراري (400 درجة مئوية إلى 900 درجة مئوية) ومعدل التسخين لإنتاجية المنتجات: الفحم الحيوي، الزيت الحيوي، أو الغاز الاصطناعي.