تعرف على كيفية استخدام الرش بالتبخير الفيزيائي (PVD) للبلازما وقصف الأيونات لترسيب أغشية رقيقة عالية التوحيد والكثافة لتطبيقات أشباه الموصلات والبصريات والمزيد.
استكشف تطبيقات الترسيب بالرش بالتيار المستمر في أشباه الموصلات والبصريات وتخزين البيانات. تعرف على كيفية ترسيبها لطلاءات معدنية موحدة وفعالة من حيث التكلفة لمختلف الصناعات.
استكشف فيزياء الانحلال الحراري: كيف يكسر الحرارة الروابط الكيميائية في بيئة خالية من الأكسجين لإنتاج الزيت الحيوي والغاز الاصطناعي والفحم من الكتلة الحيوية والنفايات.
تعرف على كيفية تفكيك الانحلال الحراري للمواد مثل الكتلة الحيوية والبلاستيك دون أكسجين لإنتاج الفحم الحيوي والزيت الحيوي والغاز الاصطناعي للطاقة والصناعة.
استكشف الخصائص الرئيسية للانحلال الحراري، بما في ذلك آليته الخالية من الأكسجين، والمنتجات الأساسية (الزيت الحيوي، والفحم الحيوي، والغاز الاصطناعي)، وكيفية التحكم في العملية لتلبية احتياجاتك.
اكتشف كيف تستخدم مصادر بلازما الترددات الراديوية طاقة الترددات الراديوية لتأيين الغاز، مما يخلق بلازما متحكمًا بها ضرورية لتصنيع أشباه الموصلات وعلوم المواد.
يستخدم الرش بالتردد اللاسلكي إشارة تيار متردد بقوة 1000 فولت عند 13.56 ميجاهرتز لإنشاء جهد تحيز ذاتي يعمل بالتيار المستمر، مما يتيح ترسيب الأغشية الرقيقة للمواد العازلة.
تعرف على كيفية إنشاء تقنيات النمو بالبخار مثل الترسيب الكيميائي للبخار (CVD) والترسيب الفيزيائي للبخار (PVD) لبلورات عالية النقاء وخالية من العيوب للإلكترونيات والمواد المتقدمة.
تعرّف على المبادئ الأساسية لتقنية الترسيب الفيزيائي للبخار (PVD)، وهي عملية تعتمد على الفراغ لإنشاء أغشية رقيقة متينة وعالية النقاء للتطبيقات الصناعية والبصرية.
تعرف على كيفية استخدام بلازما التردد اللاسلكي لمجال كهرومغناطيسي عالي التردد لتأيين الغاز، مما يتيح التحكم الدقيق في الحفر والتنظيف وترسيب الأغشية الرقيقة.
إن تركيبة طلاء الترسيب الفيزيائي للبخار ليست صيغة واحدة بل هي مزيج مصمم خصيصًا من المعادن والغازات التفاعلية، مثل التيتانيوم والنيتروجين، لخلق خصائص محددة.
تعرف على كيفية استخدام الغازات الخاملة والمتفاعلة مثل الأرجون والنيتروجين في الترسيب الفيزيائي للبخار لإنشاء طلاءات معدنية وسيراميكية متينة لتطبيقات مختلفة.
اكتشف لماذا يعتبر الأرغون هو غاز PVD الأساسي وكيف تخلق الغازات التفاعلية مثل النيتروجين أو الأكسجين طلاءات صلبة ومقاومة للتآكل مثل نيتريد التيتانيوم (TiN) أو نيتريد الكروم (CrN).
يستخدم طلاء الترسيب الفيزيائي للبخار أهدافًا صلبة مثل التيتانيوم والكروم مع غازات تفاعلية مثل النيتروجين والأسيتيلين لإنشاء أغشية رقيقة ومتينة. لا يتم تطبيق مادة كيميائية واحدة.
استكشف أنواع مفاعلات الترسيب بالبخار الكيميائي: APCVD، وLPCVD، وPECVD. تعرّف على كيفية تأثير الضغط ومصدر الطاقة والتصميم على جودة الفيلم والإنتاجية والتكلفة لمختبرك.
تعرف على كيفية تعديل ترسيب الأغشية الرقيقة بالبخار (PVD و CVD) للأسطح في تطبيقات الإلكترونيات والبصريات والتطبيقات الصناعية. اكتشف الفروق والاستخدامات الرئيسية.
استكشف الأنواع الرئيسية لعمليات طلاء الترسيب الكيميائي للبخار (CVD)، بما في ذلك APCVD و LPCVD و PECVD و LCVD، لاختيار الطريقة الأفضل للمادة والتطبيق الخاص بك.
استكشف الأنواع الرئيسية لمفاعلات الترسيب الكيميائي للبخار (CVD) المصنفة حسب الضغط ومصدر الطاقة والمزيد. تعلم كيفية اختيار النظام المناسب لاحتياجات مختبرك.
PVD تعني الترسيب الفيزيائي للبخار (Physical Vapor Deposition). تعرف على كيفية تعزيز تقنية الطلاء بالمكنسة الكهربائية هذه للصلابة ومقاومة التآكل والمتانة.
تعلم كيفية حساب معدل الترسيب باستخدام السماكة/الوقت، والقياس بأدوات مثل QCM ومقياس البروفيلومتر، والتحكم في العوامل الرئيسية للحصول على أغشية عالية الجودة.
تعرف على التعريفين المزدوجين للترسيب في الكيمياء: تحول الطور من الغاز إلى الصلب وعملية تطبيق الأغشية الرقيقة في علم المواد.
This website uses cookies to enhance your browsing experience,
analyze site traffic, and serve better user experiences. By continuing to use this site, you consent to our use of
cookies. Learn more in our cookie policy.