تعرف على سبب اختلاف كثافة الجرافيت الاصطناعي من 1.5-1.95 جم/سم³ (الحجم الكلي) إلى 2.26 جم/سم³ (نظريًا)، وكيف يؤثر ذلك على الأداء لتلبية احتياجات مختبرك.
تعتمد مقاومة الجرافيت لدرجات الحرارة على بيئته: تصل إلى 3000 درجة مئوية في الغاز الخامل، و 2200 درجة مئوية في الفراغ، ولكن حوالي 450 درجة مئوية فقط في الهواء بسبب الأكسدة.
يمكن أن يتحمل الجرافيت درجات حرارة قصوى تصل إلى 3600 درجة مئوية في البيئات الخاملة أو المفرغة من الهواء، ولكنه يتأكسد في الهواء عند درجات حرارة تزيد عن 500 درجة مئوية. تعرف على العوامل الرئيسية.
استكشف القيود الرئيسية للجرافيت: الهشاشة، والأكسدة، والتفاعلية الكيميائية. تعرّف على متى يجب استخدامه ومتى تختار بدائل لعملية المختبر أو الصناعية الخاصة بك.
استكشف الاستخدامات الصناعية الرئيسية للجرافيت في علم المعادن، والتفريغ الكهربائي (EDM)، وأشباه الموصلات، والطاقة النووية، مدفوعة بمقاومته للحرارة وتوصيله الكهربائي.
اكتشف العملية متعددة المراحل لتصنيع الجرافيت المتوازن، بدءًا من التشكيل بالضغط المتوازن البارد (CIP) وصولاً إلى الجرافيتية عند 2800 درجة مئوية، مما ينتج عنه خصائص متساوية الخواص فائقة.
استكشف الخصائص الرئيسية للجرافيت متساوي الخواص: البنية الموحدة، ومقاومة الصدمات الحرارية الفائقة، وقابلية التشغيل الآلي الممتازة، والنقاء العالي للتطبيقات المتطلبة.
تعرف على الخطوات الأربع الرئيسية لعلم مساحيق المعادن: تحضير المسحوق، الخلط، الكبس، والتلبيد. اكتشف كيف يصنع علم مساحيق المعادن أجزاءً دقيقة ومعقدة بأقل قدر من الهدر.
تعرف على كيفية استخدام الضغط الإيزوستاتي البارد (CIP) لضغط المساحيق بكثافة موحدة باستخدام ضغط سائل موحد لتشكيل أشكال معقدة من السيراميك والمعادن والكربيدات.
تعرّف على كيفية عمل الضغط أحادي المحور، ومزاياه وعيوبه مثل تدرجات الكثافة، ومتى تختار استخدامه بدلاً من الضغط متساوي الخواص (isostatic pressing) للأجزاء البسيطة ذات الحجم الكبير.
استكشف حجم سوق الضغط المتوازن ومحركاته وقطاعاته، بما في ذلك الضغط المتوازن الساخن (HIP) والبارد (CIP)، والصناعات الرئيسية، والنمو المدفوع بالطباعة ثلاثية الأبعاد والمركبات الكهربائية.
اكتشف كيف يستخدم الضغط متساوي القياس الساخن (HIP) الحرارة العالية والضغط الغازي الموحد للقضاء على المسامية وتحسين الخواص الميكانيكية في المعادن والسيراميك.
تعرف على كيفية قيام الضغط المتوازن الساخن (HIP) بإزالة المسامية الداخلية في المعادن، مما يحسن عمر التعب، والمطيلية، والموثوقية للأجزاء المصبوبة والمطبوعة ثلاثية الأبعاد.
اكتشف كيف يستخدم الضغط المتوازن الساخن (HIP) الحرارة والضغط للقضاء على الفراغات الداخلية وزيادة الكثافة وتحسين الخصائص الميكانيكية في المسبوكات والمطبوعات ثلاثية الأبعاد.
تعرف على كيفية استخدام الضغط المتوازن الساخن (HIP) لدرجات الحرارة العالية والضغط المتوازن للقضاء على العيوب الداخلية، مما يؤدي إلى إنشاء مكونات عالية الكثافة وعالية الأداء.
تعرف على كيفية قيام الكبس متساوي القياس الساخن (HIP) بالقضاء على المسامية الداخلية في المسبوكات والأجزاء المطبوعة ثلاثية الأبعاد باستخدام درجة حرارة عالية وضغط غاز موحد.
تعرف على كيفية ارتباط ضغط المكبس الهيدروليكي (PSI) بقوة الخرج (الأطنان). اكتشف تصنيفات الضغط لأنواع المكبس المختلفة، من نماذج الأسنان إلى النماذج الصناعية.
استكشف أنواع المكابس الهيدروليكية: اليدوية مقابل الأوتوماتيكية، وإطار H مقابل إطار C، والهيدروليكية مقابل الميكانيكية. اختر المكبس المناسب لاحتياجات مختبرك أو متطلباتك الصناعية.
اكتشف لماذا تعتبر الحمولة (Tonnage)، وليس ضغط PSI، المقياس الأساسي لتشغيل المكبس الهيدروليكي. تعلم كيفية حساب القوة، وفهم حدود الضغط، وضمان الاستخدام الآمن والفعال.
تعرف على سبب كون التصنيف الحقيقي للمكبس الهيدروليكي هو حمولته القصوى (tonnage)، وليس ضغط الرطل لكل بوصة مربعة (PSI) الداخلي، وكيفية اختيار المكبس المناسب لاحتياجات القوة والسرعة لتطبيقك.
This website uses cookies to enhance your browsing experience,
analyze site traffic, and serve better user experiences. By continuing to use this site, you consent to our use of
cookies. Learn more in our cookie policy.