الترسيب الذري المعزز بالبلازما (PEALD) هو تقنية متقدمة لترسيب الأغشية الرقيقة تستخدم البلازما لطلاءات عالية النقاء في درجات حرارة منخفضة على ركائز حساسة مثل الإلكترونيات والبوليمرات.
اكتشف لماذا تتفوق مفاعلات بلازما الميكروويف على ترسيب البخار الكيميائي الحراري (CVD) من خلال فصل الطاقة عن الحرارة لحماية الركائز وإنشاء طبقات طلاء فائقة.
الزركونيا هي أقوى سيراميك للأسنان (>1000 ميجا باسكال)، لكن اختيار المادة الأمثل يوازن بين القوة والجمال والمتانة. تعرف على كيفية اختيار السيراميك المناسب.
تعرف على كيفية تصنيع فيلم الرش عبر الترسيب الفيزيائي للبخار (PVD)، ورفضه العالي للحرارة، ومقايضاته مقابل الأفلام السيراميكية والمصبوغة للسيارات والمباني.
تعرف على كيفية إنشاء الأغشية المرشوشة لطلاءات فائقة الرقة وكثيفة ونقية لأشباه الموصلات والبصريات والأجهزة الطبية باستخدام تقنية الترسيب الفيزيائي للبخار (PVD).
تعرف على كيف تمكّن الجذور الحرة المتولدة بالبلازما الميكروويفية النمو المباشر للجرافين على الزجاج والسيليكون عن طريق تجاوز المحفزات المعدنية التقليدية.
اكتشف المواد المستخدمة في الطلاءات البصرية، بما في ذلك أكاسيد المعادن، والفلوريدات، والنتريدات، والمعادن النقية، التي يتم اختيارها بناءً على معامل الانكسار والمتانة.
تعرف على الفروق الرئيسية بين الترسيب بالرش بالتيار المستمر (DC) والتيار المتردد (RF): كيفية عملهما، وتطبيقاتهما، وكيفية اختيار الطريقة المناسبة للمواد الموصلة أو العازلة.
اكتشف كيفية اختيار أفضل طبقات العدسات الواقية. تعرف على سبب أهمية الطبقة المضادة للانعكاس، ومتى يجب إضافة طبقة حماية من الضوء الأزرق، أو مقاومة الخدش، أو التلوين المتغير (فوتوكروميك).
تعرف على كيفية تجاوز طحن الكرات عالي الطاقة للحواجز الديناميكية الحرارية لإنشاء سبائك النحاس والموليبدينوم من خلال الخلط الميكانيكي والخلط على المستوى الذري.
تعرف على سبب كون الكوارتز عازلاً كهربائياً من الدرجة الأولى بفضل مقاومته النوعية العالية للغاية (10⁵ إلى 10¹⁸ أوم.متر) واستقراره الحراري للتطبيقات التي تتطلب أداءً عالياً.
اكتشف مادة طلاء الزجاج المناسبة - من الفضة للتحكم في حرارة الانبعاثية المنخفضة (Low-E) إلى أكاسيد المعادن المضادة للوهج - بناءً على متطلباتك الوظيفية المحددة.
يعمل التبخير بواسطة الحزمة الإلكترونية بمنطقتين حراريتين متميزتين: مصدر شديد السخونة يتجاوز 3000 درجة مئوية وركيزة باردة قريبة من درجة حرارة الغرفة، مما يتيح طلاءات عالية النقاء على المواد الحساسة.
تعرف على سبب تمكين ركائز كربيد السيليكون (SiC) لنمو الجرافين عبر الترسيب الكيميائي للبخار (CVD) عند درجات حرارة منخفضة، مما يمنع نقاط التثبيت للحصول على جودة مواد فائقة.
تعرف على كيف يعمل ثاني أكسيد الكربون بكميات ضئيلة كعامل حفر حاسم في عملية MW-SWP CVD لمنع النمو الرأسي وضمان أفلام جرافين مستوية عالية الجودة وخالية من العيوب.
تعرف على سبب تفوق ترسيب البخار الكيميائي (CVD) بجدار بارد على أنظمة الجدار الساخن لنمو الجرافين من خلال التسخين الموضعي، وتقليل التلوث، والمعالجة السريعة.
تعرف على كيفية استخدام المفاعلات ذات التحريك النفاث (JSR) لتحليل الوزن الحراري في الموقع (TGA) والمجالات الموحدة لتوفير معدلات تفحم حركية دقيقة للسبائك عالية الحرارة.
تعرف على كيف تدفع أوعية التفاعل ذات درجات الحرارة العالية (250 درجة مئوية - 290 درجة مئوية) أسترة الراتنج من خلال التغلب على الإعاقة الفراغية لضمان نقاط تليين عالية.
تعرف على كيفية الحفاظ على مفاعلات الضغط العالي متعددة المواقع على ضغط 3 ميجا باسكال ودرجة حرارة 110 درجة مئوية لهدرجة النيترو أرينات المتوازية وفحص المحفزات.
تعرف على كيفية استخدام غرف تفاعل HDP-CVD لمصادر الترددات الراديوية المزدوجة لفصل كثافة البلازما عن طاقة الأيونات لتحقيق تعبئة فجوات خالية من الفراغات في أشباه الموصلات.
تعرف على كيف تمكّن الخلايا الإلكتروليتية والأقطاب الكهربائية من توليد الأيونات في الموقع لتصنيع الأطر المعدنية العضوية (MOF) عالية النقاء في درجة حرارة الغرفة والضغط الجوي.