تعرّف على كيفية نمو الترسيب الكيميائي للبخار (CVD) للأغشية الرقيقة لأشباه الموصلات. استكشف العملية، والمتغيرات الرئيسية، وكيف تختلف عن الترسيب الفيزيائي للبخار (PVD).
تعرف على كيفية تحويل الترسيب الكيميائي للبخار (CVD) لغازات السيليكون إلى أغشية عالية النقاء للإلكترونيات والخلايا الشمسية من خلال التحكم الحراري الدقيق.
تبلغ مقاومة صفائح الجرافين المُصنّع بالـ CVD حوالي 350 أوم/مربع مع شفافية تبلغ 90%. مثالي للأقطاب الكهربائية الشفافة، والإلكترونيات المرنة، والإنتاج القابل للتوسع.
عادةً ما يكون الجرافين الناتج بطريقة CVD بسمك ذرة واحدة، ولكن يمكن التحكم فيه بدقة من طبقة أحادية إلى بضع طبقات لتطبيقات محددة مثل الإلكترونيات والمواد المركبة.
تعرف على كيفية إنشاء الترسيب الفيزيائي للبخار (PVD) لطلاءات متينة على المستوى الجزيئي في بيئة مفرغة. استكشف العملية المكونة من 3 خطوات والمزايا والتطبيقات.
PVD ليس معدنًا بل هو عملية ترسيب فيزيائي للبخار (Physical Vapor Deposition) تخلق طبقات سيراميكية فائقة المتانة ومقاومة للتآكل على معادن مثل الفولاذ المقاوم للصدأ.
اكتشف لماذا يُعد الفراغ العالي أمرًا بالغ الأهمية في عملية الترسيب الفيزيائي للبخار لمنع التلوث، وضمان نقاء الطلاء، وتمكين التحكم الدقيق في خصائص الفيلم.
تعرف على كيفية قيام النقل الفيزيائي للبخار (PVT) بنمو بلورات عالية النقاء للإلكترونيات. افهم العملية، والاختلافات عن الترسيب الفيزيائي للبخار (PVD)، والتطبيقات الرئيسية.
اكتشف لماذا تعتبر عملية الترسيب الفيزيائي للبخار عملية من الأسفل إلى الأعلى، حيث تبني المواد ذرة بذرة للحصول على تحكم فائق في الأغشية الرقيقة في تطبيقات أشباه الموصلات والطلاء.
اكتشف المزايا الرئيسية للترسيب الكيميائي للبخار (CVD) مقارنة بالترسيب الفيزيائي للبخار (PVD)، بما في ذلك الطلاء غير المباشر، والمطابقة الفائقة، والأغشية عالية النقاء.
تعرف على الفروق الرئيسية بين الترسيب بالرش بالتيار المستمر (DC) والتيار المتردد (RF): كيفية عملهما، وتطبيقاتهما، وكيفية اختيار الطريقة المناسبة للمواد الموصلة أو العازلة.
استكشف تطبيقات الرش المغناطيسي: من أشباه الموصلات والطلاءات البصرية إلى الطبقات الواقية المتينة. تعرّف على كيف تُمكّن هذه التقنية الإلكترونيات الحديثة.
تعرف على كيفية ترسيب تقنية الرش المغناطيسي التفاعلي بالتيار المستمر للأغشية المركبة مثل الأكاسيد والنيتريدات للتطبيقات شبه الموصلة والبصرية من خلال تفاعلات غازية مُتحكَّم بها.
تعرف على كيفية عمل التذرية بالتيار المستمر، من إشعال البلازما إلى ترسيب الأغشية الرقيقة. افهم العملية والمكونات ومتى تستخدم تقنية الترسيب الفيزيائي للبخار (PVD) هذه.
اكتشف المزايا الرئيسية للرش الطلاء، بما في ذلك الالتصاق الفائق للفيلم، والنقاء الاستثنائي، وتعدد الاستخدامات غير المسبوق للمواد لإنشاء طبقات عالية الأداء.
تعرف على كيفية استخدام الترسيب بالرش المغنطروني بالتردد اللاسلكي لطاقة التردد اللاسلكي والمجالات المغناطيسية لترسيب المواد غير الموصلة مثل السيراميك والأكاسيد، متجاوزًا بذلك قيود الترسيب بالرش بالتيار المستمر (DC sputtering).
تعرف على كيفية إنشاء الرش التفاعلي لأغشية مركبة عالية الجودة مثل الأكاسيد والنيتريدات عن طريق الجمع بين هدف معدني وغاز تفاعلي في عملية الترسيب الفيزيائي للبخار (PVD).