تعرف على نطاق درجة غليان رباعي هيدرو كانابينول (THC) تحت التفريغ (155 درجة مئوية - 190 درجة مئوية) ولماذا يعد التحكم الدقيق في الضغط أمرًا أساسيًا لمنع التدهور الحراري.
تعرف على كيفية إنشاء اللحام بالنحاس في الفراغ لروابط قوية ونظيفة بشكل استثنائي عن طريق إزالة الأكسجين، مما يلغي الحاجة إلى التدفق الكيميائي. مثالي للمكونات الحيوية.
تعرف على أفضل طرق تبريد الأنظمة الهيدروليكية، بما في ذلك التبريد السلبي، والمبادلات الحرارية المبردة بالهواء، والمبردة بالماء، لمنع ارتفاع درجة الحرارة وضمان الموثوقية.
تعرّف على كيفية عمل التبخير الصناعي، بما في ذلك الطرق الحرارية وطرق الحزمة الإلكترونية، لإنشاء أغشية رقيقة فائقة النقاء وعالية الأداء للإلكترونيات والبصريات.
اكتشف المزايا الرئيسية للرش المغناطيسي، بما في ذلك التنوع غير المسبوق في المواد، والالتصاق الفائق للفيلم، والتحكم الدقيق في السماكة للحصول على أغشية رقيقة عالية الجودة.
استكشف تطبيقات الترسيب بالرش، بدءًا من تصنيع أشباه الموصلات والغرسات الطبية ووصولًا إلى الطلاءات البصرية والخلايا الشمسية. تعرّف على كيفية عمل عملية الترسيب الفيزيائي للبخار (PVD) متعددة الاستخدامات هذه.
تعرف على كيفية تمكين الترسيب بالرش المغناطيسي بالتيار المستمر النبضي من الحصول على ترسيب عالي الجودة وخالٍ من التقوس للسيراميك والأكاسيد والنيتريدات. مثالي للطلاءات المتقدمة.
تعرف على كيفية استخدام الترسيب بالرش المغناطيسي DC للمجالات المغناطيسية لإنشاء بلازما كثيفة لطلاء فعال وعالي النقاء للأغشية الرقيقة على المواد الموصلة.
تعرف على كيفية قيام تبخير المعادن، وهي تقنية أساسية من تقنيات الترسيب الفيزيائي للبخار (PVD)، بإنشاء أغشية رقيقة عالية النقاء من الألومنيوم والذهب وغيرهما في بيئة مفرغة.
تعرف على كيفية استخدام الترسيب بالرشاش المغناطيسي DC للمجال المغناطيسي لزيادة معدلات الترسيب 10-100 مرة مقارنة بالترسيب بالرشاش DC الأساسي للحصول على طلاء فعال للأغشية الرقيقة.
استكشف العيوب الرئيسية للتبخير الحراري، بما في ذلك التلوث العالي، والأغشية منخفضة الكثافة، وقيود المواد، لاختيار طريقة الترسيب الفيزيائي للبخار (PVD) المناسبة.
اكتشف الفوائد الرئيسية لمفاعلات السرير الثابت، بما في ذلك التصميم البسيط، والتكلفة الرأسمالية المنخفضة، وكفاءة التحويل العالية، والحد الأدنى من تآكل المحفز.
اكتشف المفاعلات الصناعية الثلاثة الرئيسية للتحلل الحراري: السرير المميع، الفرن الدوار، والمثقب. تعرف على كيفية تحسين كل منها لإنتاج الزيت الحيوي أو الفحم الحيوي.
اكتشف لماذا تعتبر درجة الحرارة 1450 درجة مئوية هي درجة الحرارة الحاسمة لتكوين كلنكر الأسمنت في الفرن الدوار، مما يحقق التوازن بين الجودة والكفاءة وطول عمر الفرن.
تعرّف على كيفية إنشاء رش التردد اللاسلكي لانحياز ذاتي سلبي ثابت لتيار مستمر لرش المواد العازلة، متجاوزًا بذلك قيود رش التيار المستمر لترسيب الأغشية الرقيقة.
تعرف على التبخير الحراري والتبخير بواسطة الحزمة الإلكترونية في ترسيب الأغشية الرقيقة. افهم العملية، والأساليب الرئيسية، وكيفية اختيار التقنية المناسبة لتطبيقك.
تعرف على كيفية ترسيب الأغشية الرقيقة الموصلة باستخدام الرش بالتيار المستمر (DC Sputtering) عبر الغاز المتأين في الفراغ. مثالي للمعادن، ويضمن طلاءات موحدة وعالية الجودة.
الترسيب بالرش DC مخصص للمعادن الموصلة؛ بينما يتعامل الترسيب بالرش RF مع المواد العازلة. تعرف على الاختلافات الرئيسية في مصدر الطاقة، وتوافق المواد، والتكلفة لتحسين ترسيب الأغشية الرقيقة لديك.
اكتشف نطاق تشغيل الرش بالتردد الراديوي: 13.56 ميجاهرتز، 0.5-15 ملي تور، 1000 فولت. تعرف على كيفية تمكينه لترسيب العوازل والمواد العازلة والأغشية عالية الجودة.
تعرف على كيف يستخدم الرش المغناطيسي لدايود التيار المستمر مجالًا مغناطيسيًا لحصر الإلكترونات، مما يزيد من كثافة البلازما لترسيب أغشية رقيقة أسرع وأنظف.
تعرف على كيفية عمل ترسيب حزمة الإلكترون، ومزاياه مثل معدلات الترسيب العالية وتعدد استخدامات المواد، وكيفية إنشائه لأغشية رقيقة نقية للبصريات وأشباه الموصلات.
اكتشف لماذا يعد ترسيب الذهب بالرش الطريقة المفضلة لترسيب الأغشية الرقيقة (PVD) للحصول على طبقات متينة وعالية النقاء وموحدة في الإلكترونيات والبحث والسلع الفاخرة.
استكشف الاستخدامات الصناعية الرئيسية للتميع، من التكسير الحفزي السائل (FCC) في تكرير النفط إلى الاحتراق في السرير المميع (FBC) لتوليد الطاقة، مما يتيح انتقالًا فائقًا للحرارة ومعالجة موحدة.