اكتشف كيف يُستخدم التبخير بالشعاع الإلكتروني لطلاءات بصرية عالية النقاء ومكونات إلكترونية ومكونات الفضاء الجوي. مثالي للمواد ذات نقاط الانصهار العالية.
اكتشف كيف يولد فقدان الطاقة وانخفاض الضغط حرارة في الأنظمة الهيدروليكية، مما يؤدي إلى عدم الكفاءة وتلف المكونات. تعلم كيفية إدارة الحرارة لتحسين الأداء.
اكتشف الفروق الرئيسية بين التشكيل على البارد والتشكيل على الساخن. تعرّف على متى تختار التشكيل على البارد للحصول على القوة والدقة، أو التشكيل على الساخن للحصول على الليونة والفعالية من حيث التكلفة.
تعرف على كيفية تصنيع فيلم الرش عبر الترسيب الفيزيائي للبخار (PVD)، ورفضه العالي للحرارة، ومقايضاته مقابل الأفلام السيراميكية والمصبوغة للسيارات والمباني.
تعرف على الفروق الرئيسية بين التذرير بالتيار المستمر والتيار المتردد عالي التردد: التيار المستمر للمعادن الموصلة، والتيار المتردد عالي التردد للسيراميك العازل. اختر الطريقة المناسبة لترسيب الأغشية الرقيقة الخاصة بك.
اكتشف المزايا الرئيسية للرش الطلاء، بما في ذلك الالتصاق الفائق للفيلم، والنقاء الاستثنائي، وتعدد الاستخدامات غير المسبوق للمواد لإنشاء طبقات عالية الأداء.
تعرف على عملية الرش المغناطيسي، من إعداد غرفة التفريغ إلى طرق التيار المستمر/التردد اللاسلكي، لإنشاء أغشية رقيقة عالية الجودة ومتجانسة على ركائز مختلفة.
اكتشف كيف يحلل XRF في الطب الشرعي بشكل غير مدمر بقايا إطلاق النار والزجاج والطلاء والتربة لربط المشتبه بهم بمسرح الجريمة من خلال تحليل عنصري سريع في الموقع.
استكشف بدائل FTIR مثل رامان (Raman) والرنين النووي المغناطيسي (NMR) ومطياف الكتلة (MS) والحيود بالأشعة السينية (XRD). تعرّف على كيفية اختيار التقنية الأفضل لاحتياجاتك التحليلية المحددة.
تعرف على كيفية استخدام محللات الفلورة بالأشعة السينية لأنابيب الأشعة السينية أو النظائر المشعة لتوليد الإشعاع اللازم للتحليل العنصري. اكتشف مزايا أنظمة الأنابيب الحديثة.
اكتشف الأهمية المزدوجة لبروميد البوتاسيوم (KBr) كمادة أساسية للتحليل الطيفي بالأشعة تحت الحمراء بتحويل فورييه (FTIR) وكمضاد للتشنج أساسي في الطب البيطري.
تعرف على سبب عدم قدرة مطياف الفلورية للأشعة السينية (XRF) على الكشف عن العناصر الخفيفة مثل H و He و Li و Be و B و C و N و O و F بسبب الفيزياء الأساسية ومشاكل امتصاص الإشارة.
تعرف على سبب كون الأرغون هو غاز الرش القياسي ومتى يجب استخدام النيون أو الكريبتون أو الغازات التفاعلية مثل الأكسجين والنيتروجين للحصول على أفضل ترسيب للأغشية الرقيقة.
تعرف على ما إذا كان يجب استخدام الرش المغنطروني بالتردد اللاسلكي (RF) أو التيار المستمر (DC) للأغشية الرقيقة من أكسيد الزنك (ZnO) بناءً على مادة الهدف الخاصة بك (الزنك المعدني مقابل أكسيد الزنك الخزفي).
اكتشف الفوائد الرئيسية للرش المغناطيسي بالترددات الراديوية، بما في ذلك القدرة على ترسيب المواد العازلة، ومعدلات ترسيب أعلى، وجودة غشاء محسنة، وتقليل تسخين الركيزة.
تعرف على كيفية قيام التذرية، وهي عملية ترسيب فيزيائي للبخار (PVD) رئيسية، بإنشاء طبقات رقيقة جدًا ومتجانسة للإلكترونيات والبصريات والسلع المعمرة بنقاء والتصاق استثنائيين.
تعرف على كيفية إنشاء الرذاذ البلازمي، وهي تقنية ترسيب البخار الفيزيائي (PVD)، لأغشية رقيقة موحدة للإلكترونيات والبصريات والمزيد مع التصاق ونقاء عاليين.
تعرف على كيفية إنشاء ترسيب الرش لأفلام معدنية فائقة الرقة وذات التصاق عالٍ لأشباه الموصلات والبصريات والطلاءات المتينة. افهم عملية الترسيب الفيزيائي للبخار (PVD) وفوائدها.
تعرف على كيفية استخدام التلبيد بالبلازما الشرارية (SPS) لتيار مستمر نابض وضغط لتكثيف المساحيق في دقائق، مع الحفاظ على البنى المجهرية الدقيقة للمواد المتقدمة.
تعرف على تقنيات الرش بالتقاذف بالتيار المستمر، والترددات الراديوية، والمغناطيس الدوار، وحزمة الأيونات لترسيب الأغشية الرقيقة. اختر الطريقة المناسبة للمعادن، أو العوازل، أو التطبيقات عالية النقاء.
تعرف على كيف تستخدم مفاعلات الانحلال الحراري التحلل الحراري في بيئة خالية من الأكسجين لتحويل النفايات إلى وقود وغاز وفحم. استكشف تصميمات المفاعلات ومقايضاتها.
اكتشف مواد عناصر التسخين الرئيسية للأفران، بما في ذلك الجرافيت، والموليبدينوم، وكربيد السيليكون، وثنائي سيليسيد الموليبدينوم، وكيفية اختيار المادة المناسبة لدرجة الحرارة والبيئة التي تحتاجها.
استكشف مفاعلات الكتلة الحيوية ذات الطبقة الثابتة، والطبقة المميعة، والتدفق المحمول. تعرف على كيفية تحسين كل تصميم لعمليات التغويز والانحلال الحراري لإنتاج الطاقة والمواد الكيميائية.
اكتشف أفضل المعادن المقاومة لدرجات الحرارة العالية، بدءًا من المعادن الحرارية مثل التنجستن ووصولاً إلى السبائك الفائقة مثل إنكونيل. تعرّف على كيفية الاختيار بناءً على القوة ومقاومة الأكسدة والتكلفة.
تعرف على كيفية تحكم معدل التبريد في البنية المجهرية للصب، والقوة، والصلابة، والليونة. تجنب العيوب مثل المسامية والتشقق باستخدام استراتيجيات التبريد المثلى.
اكتشف لماذا يوفر مطياف الامتصاص الذري بفرن الجرافيت (GFAAS) حدود كشف أقل بـ 100-1000 مرة من مطياف الامتصاص الذري باللهب (Flame AAS)، باستخدام الحد الأدنى من حجم العينة لتحليل دقيق للعناصر النزرة.
تعلم كيفية قياس معدلات تسرب الفراغ باستخدام اختبارات معدل الارتفاع والكشف عن الهيليوم. ضروري للحفاظ على أداء النظام من تطبيقات الفراغ الخشن إلى الفراغ الفائق.
تعرف على كيفية قيام الترسيب الكيميائي من المحلول (CSD) بإنشاء أغشية رقيقة باستخدام سلائف سائلة، مما يوفر بديلاً فعالاً من حيث التكلفة لطرق الترسيب بالبخار.
تعرف على كيفية تمكين الترسيب الكيميائي للبخار باستخدام المحفز العائم من الإنتاج المستمر واسع النطاق لأنابيب الكربون النانوية والمواد النانوية الأخرى مباشرة في الطور الغازي.
تعرف على المواد الأولية لعملية الترسيب الكيميائي للبخار (CVD): وهي مركبات متطايرة توفر الذرات اللازمة لتكوين الأغشية الرقيقة. اكتشف دورها، وخصائصها المثالية، وكيفية اختيار المادة المناسبة.
اكتشف كيف يستخدم الترسيب الكيميائي للبخار بالبلازما الحرارية (TP-CVD) البلازما عالية الطاقة لترسيب أغشية رقيقة فائقة الصلابة والكثافة وعالية الأداء بمعدلات سريعة للتطبيقات الصناعية.