تعرف على كيف يستخدم جهاز الترسيب بالرش بالذهب البلازما في الفراغ لترسيب أغشية معدنية رقيقة للغاية وموحدة لإعداد عينات المجهر الإلكتروني الماسح (SEM) والمزيد.
اكتشف أفضل طلاء للمجهر الإلكتروني الماسح (SEM) لاحتياجاتك: معادن مثل الذهب للتصوير عالي الدقة أو الكربون للتحليل العنصري الدقيق باستخدام EDX. تعرف على المفاضلات.
تعرف على كيفية منع الطلاء بالرش لشحن العينة في المجهر الإلكتروني الماسح (SEM)، وتحسين دقة الصورة، ولماذا يعد اختيار المادة (الذهب، البلاتين، الكربون) أمرًا بالغ الأهمية لتحليلك.
تعرف على كيف يمنع طلاء الرش بالذهب الشحن في المجهر الإلكتروني الماسح، مما يتيح التصوير الواضح للبوليمرات والسيراميك والعينات البيولوجية مع نسبة إشارة إلى ضوضاء محسّنة.
تعرف على سبب كون الأرغون هو غاز الرش القياسي ومتى يجب استخدام النيون أو الكريبتون أو الغازات التفاعلية مثل الأكسجين والنيتروجين للحصول على أفضل ترسيب للأغشية الرقيقة.
تعرف على كيفية استخدام الرش بالماجنترون بالتيار المستمر للمجالات المغناطيسية لإنشاء بلازما فعالة لترسيب الأغشية الرقيقة الموصلة بسرعة وبشكل موحد في الفراغ.
تعرف على ما إذا كان يجب استخدام الرش المغنطروني بالتردد اللاسلكي (RF) أو التيار المستمر (DC) للأغشية الرقيقة من أكسيد الزنك (ZnO) بناءً على مادة الهدف الخاصة بك (الزنك المعدني مقابل أكسيد الزنك الخزفي).
اكتشف الفوائد الرئيسية للرش المغناطيسي بالترددات الراديوية، بما في ذلك القدرة على ترسيب المواد العازلة، ومعدلات ترسيب أعلى، وجودة غشاء محسنة، وتقليل تسخين الركيزة.
يُستخدم رش التيار المستمر للمعادن الموصلة؛ ويُعد رش التيار المتردد ضروريًا للسيراميك العازل. تعرّف على الاختلافات الرئيسية في السرعة والتكلفة والتطبيق.
تعرف على كيفية تراوح سمك ترذيذ الذهب من الأنجستروم إلى الميكرون، المصمم خصيصًا للمجهر الإلكتروني الماسح (SEM)، والإلكترونيات، والبصريات، والطلاءات المتينة.
تعرف على عملية الرش بالبلازما: من إنشاء الفراغ إلى توليد البلازما وترسيب الأغشية الرقيقة. افهم تقنيات التيار المستمر (DC)، والترددات الراديوية (RF)، والمغناطيسية للحصول على طلاءات دقيقة.
اكتشف لماذا يعد الرش المغناطيسي الطريقة المفضلة لترسيب أغشية رقيقة عالية النقاء ومتماسكة بقوة على أي مادة صلبة تقريبًا، بدءًا من أشباه الموصلات وصولًا إلى البصريات.
تعرّف على كيف يستخدم الرش المغناطيسي بالتردد اللاسلكي الترددات الراديوية لمنع تراكم الشحنات، مما يتيح ترسيب الأغشية الرقيقة على المواد غير الموصلة مثل السيراميك والأكاسيد.
تعرّف على كيفية عمل الترسيب بالرش المغنطروني بتردد الراديو لترسيب الأغشية الرقيقة على المواد العازلة مثل السيراميك، وهي عملية أساسية لا يمكن للترسيب بالرش بالتيار المستمر (DC) القيام بها.
تعرف على كيفية عمل الترسيب بالرش المغناطيسي، ومزاياه الرئيسية مثل الطلاء بدرجة حرارة منخفضة ومعدلات الترسيب العالية، وتطبيقاته في الإلكترونيات والبصريات.
استكشف العيوب الرئيسية للتذرية المغناطيسية بالتيار المستمر، بما في ذلك عدم القدرة على طلاء العوازل، وسوء استخدام الهدف، والتكلفة العالية، ومشاكل تسخين الركيزة.
تعرف على كيفية عمل الترسيب بالرش المغنطروني بالتيار المستمر لترسيب أغشية رقيقة موصلة وموحدة باستخدام البلازما والمجالات المغناطيسية للحصول على نتائج طلاء فائقة.
تعرف على كيفية عمل الرش المعدني، وفوائده الرئيسية مثل الالتصاق العالي والنقاء، ومتى تختار طريقة الترسيب الفيزيائي للبخار (PVD) هذه لتلبية احتياجات الطلاء الخاصة بك.
تعرف على عملية الرش بالتقاذف: وهي طريقة ترسيب فيزيائي للبخار (PVD) تستخدم قصف الأيونات في الفراغ لترسيب أغشية رقيقة وموحدة على ركائز مثل رقائق السيليكون والزجاج.
تعرّف على تقنية الرش بالمغنترون المغنطروني، وهي تقنية متعددة الاستخدامات للتقنية بالترسيب بالطباعة بالانبعاث البفديوغرافي المتعدد الاستخدامات لترسيب الأغشية الرقيقة ذات الالتصاق العالي والتجانس والفعالية من حيث التكلفة.
تعرّف على تقنية الترسيب بالرش، وهي تقنية ترسيب الأغشية الرقيقة الرئيسية المستخدمة في أشباه الموصلات والبصريات والألواح الشمسية.اكتشف آليته ومزاياه وتطبيقاته.
استكشاف عيوب ترسيب الاخرق، بما في ذلك ارتفاع درجة الحرارة، وارتفاع التكاليف، والتحديات في السيطرة على العناصر الكيميائية. تعرف على كيفية تأثيرها على الكفاءة ونطاق التطبيق.